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Interaction between Cryptography and Network Coding

Signature schemes to prevent package pollution

Secret sharing and privacy capacity

New primitives and cryptanalysis (McEliece analogues)

Cryptosystems for low-power devices (IoT).
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Discrete logarithm problem (DLP)

Let p be a prime and let g , h ∈ Z∗p.
Find an integer x (if it exists) such that h ≡ g x mod p.

In general, this is a hard computational problem (for large p).

Example: Let p = 11, g = 2 and h = 9. Solve the DLP.

x 0 1 2 3 4 5 6 7 8 9

g x 1 2 4 8 5 10 9 7 3 6
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Diffie-Hellman key exchange

Alice and Bob want to agree on a random key K .
They decide upon a large prime p and some g ∈ Z∗p, then:

Alice chooses a random integer 1 ≤ a < p − 1 and sends c1 = ga

mod p to Bob.

Bob chooses a random integer 1 ≤ b < p − 1 and sends c2 = gb

mod p to Alice.

On receiving c2 Alice computes K = ca2 mod p.

On receiving c1 Bob computes K = cb1 mod p.

Alice and Bob both share the same key K = gab mod p.

It works because (ga)b = (gb)a.
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What does security mean?

An adversary Eve knows p and g , and sees c1 = ga and c2 = gb.

Eve aims to compute the common key K = gab.

A minimum level of security: secure if she can’t do this.

If she can solve the DLP, the system is insecure.

The problem Eve wants to solve is the Diffie–Hellman problem: given
c1 and c2, compute K .
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Ko Lee Cheon Han Kang Park

Motivation: Diffie–Hellman using non-abelian groups.

Let G be a (non-abelian) group. For a, g ∈ G define

ga = a−1ga.

Problem: (ga)b 6= (gb)a, in general.

Solution: Choose A ≤ G and B ≤ G with ab = ba for a ∈ A, b ∈ B.

(A and B are commuting.)

The analogue of the DLP is the conjugacy search problem: given g
and ga, find a.

How do you choose a group G and commuting subgroups A and B?

Ko et al. suggest using a braid group:
I Easy to represent braids on a computer.
I Conjugacy search problem seems hard.
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The security of Ko et al.

How difficult is the conjugacy search problem?

There’s a nice survey of some of the older work: ‘Braid based
cryptography’ by Patrick Dehornoy.

Cheon and Jun (2003) gave a (high degree) polynomial-time attack,
using representation theory.
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The problem with matrix groups (linearisation)

Let A,B be commuting subgroups of GLn(Fq).

Let g ∈ GLn(Fq).

Eve is given

c1 = a−1ga for unknown a ∈ A and

c2 = b−1gb for unknown b ∈ B.

She finds invertible ã such that

ãc1 = gã and ã commutes with B.

Then
K = (c2)a = (ga)b = (g ã)b = (gb)ã = c ã2 .
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The Algebraic Eraser

Proposed by Anshel, Anshel, Goldfeld and Lemieux about 10 years
ago.

Related to the braid group idea.

Uses the coloured Burau group GL(n,Fq(t1, . . . , tn)) o Sym(n).

Elements: (m, σ) where m ∈ GL(n,Fq(t1, . . . , tn)) and σ ∈ Sym(n).

Product: (m, σ)(m′, σ′) = (m (m′)σ, σσ′).

G is a subgroup of this group.
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The Algebraic Eraser

There is an action ψ of G on GL(n, q)× Sym(n).

Choose commuting subgroups A and B of G in some way.

Choose commuting subgroups C and D of GL(n, q) in some way.

Alice picks c ∈ C , a ∈ A and sends c1 = (c , id)ψ(a) to Bob.

Bob picks d ∈ D, b ∈ B and sends c2 = (d , id)ψ(b) to Alice.

Common key is

dc1ψ(b) = cc2ψ(a) = (cd , id)ψ(ab).
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History of the security of the Algebraic Eraser 1

The Algebraic Eraser was made public in 2002.

January 2008: Myasnikov and Ushakov posted a length-based attack:
the parameters were too small.

May 2011: Gunnells confirms these results, and recommends
increasing parameters.

January 2008 (independently): Kalka, Tsaban and Teicher break the
scheme for generic parameters: a (heuristic) linearisation attack to
find the secret matrix c , then a (heuristic) permutation group
algorithm to find common keys.

February 2012: Goldfeld and Gunnells show how a careful choice of
parameters can avoid this attack.
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History of the security of the Algebraic Eraser 2

July 2015: Sample keys provided to SRB by SecureRF, after request.

5 October 2015: SecureRF publish details of a proposed AE standard
for ISO.

12 October 2015: Ben-Zvi, SRB, Tsaban derive the shared key in
under 8 hours (128-bit parameters). SecureRF are informed.

November 2015: The attack is posted. The BBT attack derives the
common key without finding c . Linearisation is used twice: to make
membership testing for C easier; and to weaken the information the
adversary needs to derive.

January 2016: Anshel, Atkins, Goldfeld, Gunnells post a response to
the attack.

They sketch how they hope to resist the BBT attack; comment on
the security model; say the BBT attack is not always real time.

February 2016: SRB, Robshaw post a real-time attack on the ISO
protocol. Atkins, Goldfeld comment on this.
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The future of the Algebraic Eraser?

“Why Algebraic Eraser may be the riskiest cryptosystem you’ve never
heard of”, Dan Goodin, Ars Technica.

There is a thread on Cryptography Stack Exchange.

Twitter reaction overwhelmingly negative on AE security.

I would currently not recommend using the Algebraic Eraser primitive
in any applications.

The only hope: ”seems to be to make the problem of expressing a
permutation as a short product of given permutations difficult, by
working with very carefully chosen distributions.”

The problem: number of braid strands has to be increased to an
impractical level.

Anshel et al propose to use singular matrices to compensate for this.
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Some Links

A. Ben-Zvi, S.R. Blackburn and B. Tsaban, ’A practical cryptanalysis of
the Algebraic Eraser’:

http://eprint.iacr.org/2015/1102

Simon R. Blackburn and M.J.B. Robshaw, ‘On the Security of the
Algebraic Eraser Tag Authentication Protocol’:

http://eprint.iacr.org/2016/091

See http://tinyurl.com/oqu2q2b for an Ars Technica article on this
research.
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