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To Honor the Memory 
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And Our COST Friend 

Axel Kohnert 1962 -- 2013 
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Outline 

From network codes to subspace codes 

Codes and designs over vector spaces 

Before we knew on network coding 

Open problems and future research 

Four years in the COST Action 
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Before Network Coding 

The father of Projective Geometry 

Grandfather? 
Pappus 300 AD 

Who else? 

Girard Desargues 1593 -- 1661 

Blaise Pascal 1623 -- 1662 

a clinical death What next? 

unfortuntely, 
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Projective Geometry Reborn 

Hermann Grassmann  1809 -- 1877 

The Grassmann graph 
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The Great Geometers 
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The Great Geometers 
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The Great Geometers 

Felix Klein 1849 -- 1925 

Klein quartic 
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And Block Designers 

Jakob Steiner  1796 -- 1863 
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And Block Designers 

Jakob Steiner  1796 -- 1863 

Steiner systems 
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And The Great 

Leonhard Euler 1707 -- 1783 
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𝒒-Analogs 

Peter Cameron  1947 - Jacques Tits 1930 - 

Philippe Delsarte 1942 - 

1957 

1976 

1974 
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𝒕-Designs Over Vector Spaces 

S. Thomas 
1987, 1996 
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1987, 1996 
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D. K. Ray-Chaudhuri, N. M. Singhi 
1989 
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1990, 1992 

S. Thomas 
1987, 1996 
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M. Miyakawa, A. Munemasa, S. Yoshiara 

D. K. Ray-Chaudhuri, N. M. Singhi 
1989 

1995 

H. Susuki 
1990, 1992 

S. Thomas 
1987, 1996 
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𝒕-Designs Over Vector Spaces 

M. Braun, A. Kerber, R. Laue 2005 

M. Miyakawa, A. Munemasa, S. Yoshiara 

D. K. Ray-Chaudhuri, N. M. Singhi 
1989 

1995 

H. Susuki 
1990, 1992 

S. Thomas 
1987, 1996 
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Codes, Designs in Vector Spaces 

W. J. Martin, X. J. Zhu 
1995 

L. Chihara 
1987 
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Codes, Designs in Vector Spaces 

R. Ahlswede, H. K. Aydinian, L. H. Khachatrian 

W. J. Martin, X. J. Zhu 
1995 

2001 

L. Chihara 
1987 
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Codes, Designs in Vector Spaces 

R. Ahlswede, H. K. Aydinian, L. H. Khachatrian 

W. J. Martin, X. J. Zhu 
1995 

2001 

L. Chihara 
1987 

M. Schwartz, T. E. 
2002 
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Results in Projective geometry 

A set of disjoint 𝒌-subspaces. 

Partial spread  

A set of 𝒌-subspaces 
which are incident to each 
𝒕-subspace, 𝒕 > 𝒌. 

Blocking set 
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Results in Projective geometry 

Albrecht Beutelspacher  1950 - 

The size of a partial spreads 

1-parallelisms - partitions of 
all 1-subspaces into spreads. 

Geometric spreads - 
optimal 𝒒-covering designs. 
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Hamming and Preparata Codes 

The codewords of weight three in the 
Hamming code correspond to 1-

dimensional subspaces. The union of 
words of weight three in certain 

translates of the Preparata code consists 
of exactly these codewords. These words 
in each such translate corresponds to a 
1-spread. Thus, we have a 1-parallelism 

for the 1-dimensional subspaces.  
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important role in error-correcting 

codes for network codes and in error-
correcting codes for network coding. 
Comprehensive work, upper bounds on 
their size and constructions which 
attain these bounds were found.  
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Rank-Metric Codes 

Rank-metric codes played an 
important role in error-correcting 

codes for network codes and in error-
correcting codes for network coding. 
Comprehensive work, upper bounds on 
their size and constructions which 
attain these bounds were found.  

P. Delsarte 1978, E. M. Gabidulin 1985, 
R. M. Roth 1991 



CODES AND DESIGNS 

67 

Routing 



CODES AND DESIGNS 

68 

Routing 

min-cut/max-flow Theorem 



CODES AND DESIGNS 

69 

Routing 
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flow exists, we have that the maximum 𝒔 − 𝒕 flow 
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cut. 

min-cut/max-flow Theorem 
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Routing 

For any maximum flow problem for which a feasible 
flow exists, we have that the maximum 𝒔 − 𝒕 flow 
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cut. 

min-cut/max-flow Theorem 

Let 𝑮 = 𝑽,𝑬  be a unit capacity flow network. 
There are 𝒌 edge disjoint paths in 𝑮 from 𝒔 to 
𝒕 if and only if the maximum value of an 𝒔 − 𝒕 
flow in 𝑮′ is at least 𝒌.  

Menger’s Theorem 

L. R. Ford Jr. and D. R. Fulkerson 1956 

K. Menger 1927 
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Routing 

In a directed graph 𝑮 = (𝑽, 𝑬) there are 𝒌 
edge disjoint spanning trees rooted at 𝒓 ∈ 𝑽 if 

and only if 𝒌 ≤ 𝑪𝑮(𝒓, 𝑽 ∖ {𝒓}). 

Edmonds Theorem 
For broadcasting 

Maximaizing the multicast rate is an NP-hard 
problem with reduction to the Steiner tree problem. 

J. Edmonds 1972 

K. Jain, M. Mahdian, M. R. Salavatipour 2003 
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Network Codes to Subspace Codes 

A multicast network is a directed acyclic 
graph containing a single source node and a 

collection of 𝑵 destination nodes. The 
source node has a set of 𝒉 messages from 
a fixed alphabet and each destination node 

tries to recover all the messages. 

Multicast Network 
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Network Codes to Subspace Codes 

A multicast network is a directed acyclic 
graph containing 𝒉 source nodes and a 
collection of 𝑵 destination nodes. Each 

source node has one message from a fixed 
alphabet and each destination node tries to 

recover all the messages. 

Multicast Network 
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The butterfly network 

Network Codes to Subspace Codes 
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The butterfly network 

Network Codes to Subspace Codes 

𝐱, 𝐲 ∈ {𝟎, 𝟏,… , 𝒏 − 𝟏} 



x y 

y 

x+y y x 

x,y x,y 

x,y 

x 

x+y x+y 

computation modulo 𝒏 

90 
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𝐱, 𝐲 ∈ {𝟎, 𝟏,… , 𝒏 − 𝟏} 
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The butterfly network 

Network Codes to Subspace Codes 

𝐱, 𝐲 ∈ {𝟎, 𝟏,… , 𝒏 − 𝟏} 

R. Ahlswede, N. Cai, S.-Y. Li, R. W. Yeung 2000 
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The butterfly network 

Network Codes to Subspace Codes 

S.-Y. Li, R. W. Yeung, N. Cai 2003 

𝐱, 𝐲 ∈ {𝟎, 𝟏,… , 𝒏 − 𝟏} 

R. Ahlswede, N. Cai, S.-Y. Li, R. W. Yeung 2000 
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Min-Cut/Max-Flow Theorem 
for Multicast Networks 
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Network Codes to Subspace Codes 

A multicast network is solvable if there 
exist 𝒉 edge disjoint paths, starting at 
the 𝒉 sources, to each one of the 𝑵 

destination nodes. 

Min-Cut/Max-Flow Theorem 
for Multicast Networks 
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Network Codes to Subspace Codes 

A multicast network is solvable if there 
exist 𝒉 edge disjoint paths, starting at 
the 𝒉 sources, to each one of the 𝑵 

destination nodes. 

Min-Cut/Max-Flow Theorem 
for Multicast Networks 

A multicast network is solvable if the 
min-cut to each destination is 𝒉. 
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Network Codes to Subspace Codes 

R. Kötter, M. Médard 2003 
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Network Codes to Subspace Codes 

R. Kötter, M. Médard 2003 

Algebraic Approach 
for Network Coding 
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Polynomial Time Algorithm for 
Solvable Multicast Networks 
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Network Codes to Subspace Codes 

A polynomial time algorithm to find the 
network code of a solvable multicast 

network with 𝑵 receivers. The solution is 
over any field 𝔽𝒒 such that 𝒒 ≥ 𝑵. 

Polynomial Time Algorithm for 
Solvable Multicast Networks 
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Network Codes to Subspace Codes 

A polynomial time algorithm to find the 
network code of a solvable multicast 

network with 𝑵 receivers. The solution is 
over any field 𝔽𝒒 such that 𝒒 ≥ 𝑵. 

Polynomial Time Algorithm for 
Solvable Multicast Networks 

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, 
K. Jain, L. M. G. M. Tolhuizen 2005 
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Network Codes to Subspace Codes 

Network nodes independently and randomly 
select linear mappings from inputs links onto 

outputs links over some field. 

Random Network Coding 
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Network Codes to Subspace Codes 

T. Ho, M. Medard, R. Kötter, D. R. Karger, M.  
Effros, J. Shi, B. Leong 2006 

Network nodes independently and randomly 
select linear mappings from inputs links onto 

outputs links over some field. 

Random Network Coding 
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Network Codes to Subspace Codes 

R. Kötter, and F. Kschischang, 2008 
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Network Codes to Subspace Codes 

R. Kötter, and F. Kschischang, 2008 

The Operator Channel 



CODES AND DESIGNS 

111 

Network Codes to Subspace Codes 

R. Kötter, and F. Kschischang, 2008 

Subspace codes for error-correction 
in random network coding. 

The Operator Channel 
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Network Codes to Subspace Codes 

Lifted Rank-Metric Codes 
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Network Codes to Subspace Codes 

Large constant dimension codes can 
be constructed by lifting rank-metric 
codes, especially maximum rank 
distance (MRD) codes.   

Lifted Rank-Metric Codes 
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Network Codes to Subspace Codes 

D. Silva, F. Kschischang, R. Kötter 2008 

Large constant dimension codes can 
be constructed by lifting rank-metric 
codes, especially maximum rank 
distance (MRD) codes.   

Lifted Rank-Metric Codes 
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Network Codes to Subspace Codes 

Metrics for Error-Correcting 
Network Codes 
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Network Codes to Subspace Codes 

Which metric to use: rank distance, 
subspace distance, or injection distance. 

Metrics for Error-Correcting 
Network Codes 
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Network Codes to Subspace Codes 

D. Silva, F. Kschischang 2009 

Which metric to use: rank distance, 
subspace distance, or injection distance. 

Metrics for Error-Correcting 
Network Codes 
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Codes and Designs Over GF(𝒒) 

Basic bounds, linear programming, 
cyclic codes, perfect codes. 

Error-correcting codes in the 
projective space 
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Codes and Designs Over GF(𝒒) 

Basic bounds, linear programming, 
cyclic codes, perfect codes. 

Error-correcting codes in the 
projective space 

Constant dimension codes and 
general subspace codes. 
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Codes and Designs Over GF(𝒒) 

T. E. and A. Vardy 2008, 2011 

Basic bounds, linear programming, 
cyclic codes, perfect codes. 

Error-correcting codes in the 
projective space 

Constant dimension codes and 
general subspace codes. 
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Codes and Designs Over GF(𝒒) 

Covering Designs in the 
Grassmann space 
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Codes and Designs Over GF(𝒒) 

Basic bounds and constructions 
for covering designs over GF(𝒒). 

Covering Designs in the 
Grassmann space 
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Codes and Designs Over GF(𝒒) 

T. E. and A. Vardy 2011 

Basic bounds and constructions 
for covering designs over GF(𝒒). 

Covering Designs in the 
Grassmann space 
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Codes and Designs Over GF(𝒒) 
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Codes and Designs Over GF(𝒒) 

Subspace Codes via Ferrers 
Diagram and Rank-Metric Codes 
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Codes and Designs Over GF(𝒒) 

Subspace Codes via Ferrers 
Diagram and Rank-Metric Codes 

Representation of subspaces, 
Ferrers diagram rank-metric 
codes, punctured codes. 
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Codes and Designs Over GF(𝒒) 

T. E. and N. Silberstein 2009 

Subspace Codes via Ferrers 
Diagram and Rank-Metric Codes 

Representation of subspaces, 
Ferrers diagram rank-metric 
codes, punctured codes. 



CODES AND DESIGNS 

133 
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Codes and Designs Over GF(𝒒) 

Codes based on Lifted MRD Codes 
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Codes and Designs Over GF(𝒒) 

The lifted MRD codes are viewed as designs, 
bounds and constructions for codes which 
contain the related lifted MRD code. 

Codes based on Lifted MRD Codes 
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Codes and Designs Over GF(𝒒) 

T. E. and N. Silberstein 2011, 2013 

The lifted MRD codes are viewed as designs, 
bounds and constructions for codes which 
contain the related lifted MRD code. 

Codes based on Lifted MRD Codes 
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Codes and Designs Over GF(𝒒) 
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Codes and Designs Over GF(𝒒) 

Cyclic Orbit Codes 
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Codes and Designs Over GF(𝒒) 

Cyclic Orbit Codes 

Properties of Grassmannian codes which 
are defined as orbits of a subgroup of  the 
general linear group. 
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Codes and Designs Over GF(𝒒) 

A.-L. Trautmann, F. Manganiello, 
M. Braun, J. Rosenthal 2013 

Cyclic Orbit Codes 

Properties of Grassmannian codes which 
are defined as orbits of a subgroup of  the 
general linear group. 
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Codes and Designs Over GF(𝒒) 
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Codes and Designs Over GF(𝒒) 

Covering Codes 
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Codes and Designs Over GF(𝒒) 

New constructions (upper bounds), 
mainly ones based on lifted MRD codes. 

Covering Codes 
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Codes and Designs Over GF(𝒒) 

New constructions (upper bounds), 
mainly ones based on lifted MRD codes. 

Covering Codes 

T. E. 2014 
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The Grassmannian 
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The Grassmannian 

𝔽𝒒
𝒏 - vector space of dimension 𝒏 over 𝔽𝒒 (= 𝐆𝐅 𝒒   ). 
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The Grassmannian 

𝑮𝒒(𝒏, 𝒌)   is the set of all 𝒌-dimensional 
subspaces of 𝔽𝒒

𝒏 (the Grassmannian). 

𝔽𝒒
𝒏 - vector space of dimension 𝒏 over 𝔽𝒒 (= 𝐆𝐅 𝒒   ). 
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The Grassmannian 

𝑮𝒒(𝒏, 𝒌)   is the set of all 𝒌-dimensional 
subspaces of 𝔽𝒒

𝒏 (the Grassmannian). 

Gaussian coefficients (𝒒-binomial coefficient) 

𝔽𝒒
𝒏 - vector space of dimension 𝒏 over 𝔽𝒒 (= 𝐆𝐅 𝒒   ). 
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The Grassmannian 

𝑮𝒒(𝒏, 𝒌)   is the set of all 𝒌-dimensional 
subspaces of 𝔽𝒒

𝒏 (the Grassmannian). 

Gaussian coefficients (𝒒-binomial coefficient) 

𝒏
𝒌 𝒒

= 
𝒒𝒏−𝟏 𝒒𝒏−𝟏−𝟏 ⋯(𝒒𝒏−𝒌+𝟏−𝟏)

𝒒𝒌−𝟏 𝒒𝒌−𝟏−𝟏 ⋯(𝒒−𝟏)
 

𝔽𝒒
𝒏 - vector space of dimension 𝒏 over 𝔽𝒒 (= 𝐆𝐅 𝒒   ). 
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The Grassmannian 

𝑮𝒒(𝒏, 𝒌)   is the set of all 𝒌-dimensional 
subspaces of 𝔽𝒒

𝒏 (the Grassmannian). 

Gaussian coefficients (𝒒-binomial coefficient) 

𝒏
𝒌 𝒒

= 
𝒒𝒏−𝟏 𝒒𝒏−𝟏−𝟏 ⋯(𝒒𝒏−𝒌+𝟏−𝟏)

𝒒𝒌−𝟏 𝒒𝒌−𝟏−𝟏 ⋯(𝒒−𝟏)
 

│𝑮𝒒 𝒏, 𝒌 │ =  
𝒏
𝒌 𝒒

  

𝔽𝒒
𝒏 - vector space of dimension 𝒏 over 𝔽𝒒 (= 𝐆𝐅 𝒒   ). 
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𝒒-Steiner Systems 



CODES AND DESIGNS 

152 

𝒒-Steiner Systems 

A 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏 𝒒 is a pair (𝑵,𝑩), 
where 𝑵 is an 𝒏-dimensional space over 𝔽𝒒 and 𝑩 
is set of 𝒌-dimensional subspaces (called blocks) 
of 𝑵 such that each 𝒕-dimensional subspace of 𝑵 

is contained in exactly one block of 𝑩. 
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𝒒-Steiner Systems 

A 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏 𝒒 is a pair (𝑵,𝑩), 
where 𝑵 is an 𝒏-dimensional space over 𝔽𝒒 and 𝑩 
is set of 𝒌-dimensional subspaces (called blocks) 
of 𝑵 such that each 𝒕-dimensional subspace of 𝑵 

is contained in exactly one block of 𝑩. 

│𝑺 𝒕, 𝒌, 𝒏 𝒒│ =

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒
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Codes and Designs Over GF(𝒒) 
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Codes and Designs Over GF(𝒒) 

Algebraic, Combinatorics, 
and Applications, Thurnau, 

Germany 2010 
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Codes and Designs Over GF(𝒒) 

Algebraic, Combinatorics, 
and Applications, Thurnau, 

Germany 2010 

Castle Meeting on Coding 
Theory and Applications, 

Cardona, Spain 2011 
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Asymptotic Behavior 
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Asymptotic Behavior 

𝑨(𝒏) ∼ 𝑩(𝒏) if 𝐥𝐢𝐦 𝑨 𝒏 𝑩 𝒏 = 𝟏 as 𝒏 →  ∞. 
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Asymptotic Behavior 

Theorem 
𝑨(𝒏) ∼ 𝑩(𝒏) if 𝐥𝐢𝐦 𝑨 𝒏 𝑩 𝒏 = 𝟏 as 𝒏 →  ∞. 
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Asymptotic Behavior 

If 𝒒, 𝒌, and 𝒕 are fixed integers with 𝟎 ≤ 𝒕 ≤ 𝒌, 𝒒 a 
prime power, then the size 𝑷(𝒕, 𝒌, 𝒏) (the largest size 
of a set with 𝒌–subspaces (blocks) of an 𝒏-space 𝑵 
such that each 𝒕-subspace of 𝑵 appears in exactly 
one block) satisfies 

𝑷(𝒕, 𝒌, 𝒏) ∼

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒

  

as 𝒏 →  ∞. 

Theorem 
𝑨(𝒏) ∼ 𝑩(𝒏) if 𝐥𝐢𝐦 𝑨 𝒏 𝑩 𝒏 = 𝟏 as 𝒏 →  ∞. 
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Asymptotic Behavior 

If 𝒒, 𝒌, and 𝒕 are fixed integers with 𝟎 ≤ 𝒕 ≤ 𝒌, 𝒒 a 
prime power, then the size 𝑷(𝒕, 𝒌, 𝒏) (the largest size 
of a set with 𝒌–subspaces (blocks) of an 𝒏-space 𝑵 
such that each 𝒕-subspace of 𝑵 appears in exactly 
one block) satisfies 

𝑷(𝒕, 𝒌, 𝒏) ∼

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒

  

as 𝒏 →  ∞. 

Theorem 
𝑨(𝒏) ∼ 𝑩(𝒏) if 𝐥𝐢𝐦 𝑨 𝒏 𝑩 𝒏 = 𝟏 as 𝒏 →  ∞. 

S.Blackburn, T. E. 2012 
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Asymptotic Behavior 

If 𝒒, 𝒌, and 𝒕 are fixed integers with 𝟎 ≤ 𝒕 ≤ 𝒌, 𝒒 a 
prime power, then the size 𝑷(𝒕, 𝒌, 𝒏) (the largest size 
of a set with 𝒌–subspaces (blocks) of an 𝒏-space 𝑵 
such that each 𝒕-subspace of 𝑵 appears in exactly 
one block) satisfies 

𝑷(𝒕, 𝒌, 𝒏) ∼

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒

  

as 𝒏 →  ∞. 

Theorem 
𝑨(𝒏) ∼ 𝑩(𝒏) if 𝐥𝐢𝐦 𝑨 𝒏 𝑩 𝒏 = 𝟏 as 𝒏 →  ∞. 

S.Blackburn, T. E. 2012 
Same result for covering. 
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Spreads 
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem spread 
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 

Proof 

spread 



CODES AND DESIGNS 

167 

Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 

Proof 𝒏 = 𝒔𝒌 

spread 
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 

Proof 𝒏 = 𝒔𝒌 𝜶 primitive in 𝑮𝑭(𝒒𝒏) 

spread 
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 

Proof 𝒏 = 𝒔𝒌 𝜶 primitive in 𝑮𝑭(𝒒𝒏) 

𝒓 =
𝒒𝒏 − 𝟏 

𝒒𝒌 − 𝟏
 

spread 
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 

Proof 𝒏 = 𝒔𝒌 𝜶 primitive in 𝑮𝑭(𝒒𝒏) 

𝒓 =
𝒒𝒏 − 𝟏 

𝒒𝒌 − 𝟏
 

𝜶𝒓 is primitive in the 
subfield 𝑮𝑭(𝒒𝒌) of 𝑮𝑭(𝒒𝒏) 

spread 
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 

Proof 𝒏 = 𝒔𝒌 𝜶 primitive in 𝑮𝑭(𝒒𝒏) 

𝒓 =
𝒒𝒏 − 𝟏 

𝒒𝒌 − 𝟏
 

𝜶𝒓 is primitive in the 
subfield 𝑮𝑭(𝒒𝒌) of 𝑮𝑭(𝒒𝒏) 

{𝟎, 𝜶𝒊, 𝜶𝒊+𝒓, 𝜶𝒊+𝟐𝒓, … , 𝜶𝒊+ 𝟐
𝒌−𝟐 𝒓}, 𝟎 ≤ 𝒊 ≤ 𝒓 − 𝟏, 

are closed under addition 
 in 𝑮𝑭(𝒒𝒏) ⇒ subspaces ⇒ 𝑺 𝟏, 𝒌, 𝒏 𝒒 

spread 
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Four Years of the COST Action 
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Four Years of the COST Action 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 



CODES AND DESIGNS 

174 

Four Years of the COST Action 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 Ascona 2012 
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Four Years of the COST Action 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 

M. Braun, T. E., P. Östergård,           
A. Vardy, A. Wassermann, 2013 

Ascona 2012 
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Four Years of the COST Action 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 

M. Braun, T. E., P. Östergård,           
A. Vardy, A. Wassermann, 2013 

Ascona 2012 

Bergen 2013 
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177 



Four Years of the COST Action 

178 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 



Four Years of the COST Action 

179 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 
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180 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 



Four Years of the COST Action 

181 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

cyclic shift 
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182 

𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 
cyclic shift 
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 
cyclic shift 

Frobenius map 
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 

𝑭(𝑽) = {𝟎, 𝜶𝟐⋅𝒊𝟏 , 𝜶𝟐⋅𝒊𝟐 , 𝜶𝟐⋅𝒊𝟑 , 𝜶𝟐⋅𝒊𝟒 , 𝜶𝟐⋅𝒊𝟓 , 𝜶𝟐⋅𝒊𝟔 , 𝜶𝟐⋅𝒊𝟕} 

cyclic shift 

Frobenius map 
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 

𝑭(𝑽) = {𝟎, 𝜶𝟐⋅𝒊𝟏 , 𝜶𝟐⋅𝒊𝟐 , 𝜶𝟐⋅𝒊𝟑 , 𝜶𝟐⋅𝒊𝟒 , 𝜶𝟐⋅𝒊𝟓 , 𝜶𝟐⋅𝒊𝟔 , 𝜶𝟐⋅𝒊𝟕} 

cyclic shift 

Frobenius map 

 + 
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 

𝑭(𝑽) = {𝟎, 𝜶𝟐⋅𝒊𝟏 , 𝜶𝟐⋅𝒊𝟐 , 𝜶𝟐⋅𝒊𝟑 , 𝜶𝟐⋅𝒊𝟒 , 𝜶𝟐⋅𝒊𝟓 , 𝜶𝟐⋅𝒊𝟔 , 𝜶𝟐⋅𝒊𝟕} 

cyclic shift 

Frobenius map 

 + 

= 
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 

𝑭(𝑽) = {𝟎, 𝜶𝟐⋅𝒊𝟏 , 𝜶𝟐⋅𝒊𝟐 , 𝜶𝟐⋅𝒊𝟑 , 𝜶𝟐⋅𝒊𝟒 , 𝜶𝟐⋅𝒊𝟓 , 𝜶𝟐⋅𝒊𝟔 , 𝜶𝟐⋅𝒊𝟕} 

cyclic shift 

Frobenius map 

normalizer of Singer subgroup automoprphism 

 + 

= 
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 

𝑭(𝑽) = {𝟎, 𝜶𝟐⋅𝒊𝟏 , 𝜶𝟐⋅𝒊𝟐 , 𝜶𝟐⋅𝒊𝟑 , 𝜶𝟐⋅𝒊𝟒 , 𝜶𝟐⋅𝒊𝟓 , 𝜶𝟐⋅𝒊𝟔 , 𝜶𝟐⋅𝒊𝟕} 

cyclic shift 

Frobenius map 

normalizer of Singer subgroup automoprphism 

 + 

= 

15 representatives 
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 

𝑭(𝑽) = {𝟎, 𝜶𝟐⋅𝒊𝟏 , 𝜶𝟐⋅𝒊𝟐 , 𝜶𝟐⋅𝒊𝟑 , 𝜶𝟐⋅𝒊𝟒 , 𝜶𝟐⋅𝒊𝟓 , 𝜶𝟐⋅𝒊𝟔 , 𝜶𝟐⋅𝒊𝟕} 

cyclic shift 

Frobenius map 

normalizer of Singer subgroup automoprphism 

 + 

= 

1 597 245 
 3−dimensional subspaces  

15 representatives 
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Designs Over Vector Spaces  

Ghent 2013 
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Four Years of the COST Action 

Derived and residual 
subspace designs. 

Designs Over Vector Spaces  

Ghent 2013 
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Four Years of the COST Action 

Derived and residual 
subspace designs. 

Designs Over Vector Spaces  

M. Kiermaier and R. Laue 2015 

Ghent 2013 
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Four Years of the COST Action 
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a large automorphism group. 
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Four Years of the COST Action 

If a 2-Fano plane exists it does not have 
a large automorphism group. 

Fano Plane 

M. Braun, M. Kiermaier, N. Nakić 2015 

Ghent 2013 
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Four Years of the COST Action 

If a 2-Fano plane exists it does not have 
a large automorphism group. 

Fano Plane 

M. Braun, M. Kiermaier, N. Nakić 2015 

Istanbul 2015 

Ghent 2013 
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Four Years of the COST Action 

If a 2-Fano plane exists it does not have 
a large automorphism group. 

Fano Plane 

M. Braun, M. Kiermaier, N. Nakić 2015 

The structure of the 
q-Fano plane if exists. 

Istanbul 2015 

Ghent 2013 
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Four Years of the COST Action 

If a 2-Fano plane exists it does not have 
a large automorphism group. 

Fano Plane 

M. Braun, M. Kiermaier, N. Nakić 2015 

The structure of the 
q-Fano plane if exists. 

T. E. 2015 

Istanbul 2015 

Ghent 2013 
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Four Years of the COST Action 

Rank-Metric Codes 

Bordeux 2014 Palmela 2014 
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Four Years of the COST Action 

Constructions of Ferrers diagram 
rank-metric codes and a related 
Anticode bound. 
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Four Years of the COST Action 

Constructions of Ferrers diagram 
rank-metric codes and a related 
Anticode bound. 

Rank-Metric Codes 

T. E., E. Gorla, A. Ravagnani, A. Wachter-Zeh 2014 

Bordeux 2014 Palmela 2014 
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New Codes 
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Four Years of the COST Action 

New Codes 

ALCOMA 2015 Bordeux 2014 
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Four Years of the COST Action 

Large constant dimension codes 
of length 6 and length 8 over 
any given finite field. 

New Codes 

ALCOMA 2015 Bordeux 2014 
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Four Years of the COST Action 

Large constant dimension codes 
of length 6 and length 8 over 
any given finite field. 

New Codes 

A. Cossidente, F. Pavese 2014 
A. Cossidente, F. Pavese 2015 

ALCOMA 2015 Bordeux 2014 
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Subspace polynomial, cyclic mapping, 
Frobenius mapping, relatively large 
cyclic subspace codes. 

E. Ben Sasson, T. E., A. Gabizon, N. Raviv 2015 

Palmela 2014 
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Four Years of the COST Action 

Subspace polynomial, cyclic mapping, 
Frobenius mapping, relatively large 
cyclic subspace codes. 

E. Ben Sasson, T. E., A. Gabizon, N. Raviv 2015 

Istanbul 2015 

Palmela 2014 

Subspace Polynomial and 
Cyclic Subspace Codes 
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Four Years of the COST Action 

Subspace polynomial, cyclic mapping, 
Frobenius mapping, relatively large 
cyclic subspace codes. 

E. Ben Sasson, T. E., A. Gabizon, N. Raviv 2015 

New bounds Istanbul 2015 

Palmela 2014 

Subspace Polynomial and 
Cyclic Subspace Codes 
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Four Years of the COST Action 

Subspace polynomial, cyclic mapping, 
Frobenius mapping, relatively large 
cyclic subspace codes. 

E. Ben Sasson, T. E., A. Gabizon, N. Raviv 2015 

New bounds Istanbul 2015 
K. Otal and F. Özbudak 2015 

Palmela 2014 

Subspace Polynomial and 
Cyclic Subspace Codes 
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and rank-metric codes 

Equidistant Codes 

T. E. and N. Raviv 2015 

Bordeux 2014 
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Theory for equidistant 
Grassmannian codes 

and rank-metric codes 

Equidistant Codes 

T. E. and N. Raviv 2015 

Istanbul 2015 

Bordeux 2014 
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Four Years of the COST Action 

Theory for equidistant 
Grassmannian codes 

and rank-metric codes 

Equidistant Codes 

T. E. and N. Raviv 2015 

Istanbul 2015 

Bordeux 2014 

New bounds 



CODES AND DESIGNS 

230 

Four Years of the COST Action 

Theory for equidistant 
Grassmannian codes 

and rank-metric codes 

Equidistant Codes 

T. E. and N. Raviv 2015 

Istanbul 2015 

Bordeux 2014 

New bounds 

R.D. Barrolleta, D. Bartoli, M. De Boeck, 
E. Suárez Canedo, L. Storme, A.-E. Riet, 

P. Vandendriessche 
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Multicast network which is solved with vectors 
of length 𝒕  over 𝔽𝒒 and can be solved with 
scalar linear network coding only over a field 

of order 𝒒 ℓ−𝟏 𝒕
𝟐 ℓ , where 𝟐ℓ is the number of 

messages. 
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Four Years of the COST Action 

Multicast network which is solved with vectors 
of length 𝒕  over 𝔽𝒒 and can be solved with 
scalar linear network coding only over a field 

of order 𝒒 ℓ−𝟏 𝒕
𝟐 ℓ , where 𝟐ℓ is the number of 

messages. 

Vector Network Coding Outperforms 
Scalar Network Coding 

T. E. and A. Wachter-Zeh 2016 

Constructions and bounds are based on 
rank-metric codes and subspace codes. 
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Open Problems, Future Reseach 

Bounds on the Alphabet size for a given 

number 𝒉 of messages and 𝑵 receivers. 

Does there exist a multicast network with 
two messages in which vector network 

coding outperforms scalar network coding? 

Is there a multicast network in which 
exactly 𝒉 edge disjoint paths are used to 
each receiver, and vector network coding 

outperforms scalar network coding. 
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Find new 𝒒-Steiner systems. 

Prove the nonexistence of some 
currently possible 𝒒-Steiner systems. 

Does there exists 𝒒-Steiner 
system 𝑺 𝟐, 𝟑, 𝟕 𝒒 (𝒒-Fano plane).  
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Open Problems, Future Reseach 

Find new 𝒒-Steiner systems. 

Prove the nonexistence of some 
currently possible 𝒒-Steiner systems. 

Improve the bounds on the 
sizes of partial spreads. 

Does there exists 𝒒-Steiner 
system 𝑺 𝟐, 𝟑, 𝟕 𝒒 (𝒒-Fano plane).  
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Open Problems, Future Reseach 

Constructions for large cyclic codes. 

New constructions and bounds on 
subspaces codes which are not 

constant dimension codes. 

Prove that current upper bounds are 
asymptotically optimal for new parameters.  



CODES AND DESIGNS 

249 

Open Problems, Future Reseach 

Constructions for large cyclic codes. 

New constructions and bounds on 
subspaces codes which are not 

constant dimension codes. 

Find new applications for subspace codes. 

Prove that current upper bounds are 
asymptotically optimal for new parameters.  
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My Former Students, Postdocs 

Moshe Schwartz, Natalia Silberstein, 
Netanel Raviv, Antonia Wachter-Zeh 
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