

A random network coding testbed: Implementation And Performance Results

Dubrovnik'2016

Selahattin Gökceli

(Joint work with Semiha Tedik Başaran and Güneş Karabulut Kurt)

ISTANBUL TECHNICAL UNIVERSITY

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS ENGINEERING

This work is supported by TUBITAK under Grant 113E294.

Outline

- Main Concepts
 - Network Coding
 - Cooperative Networking
 - Cooperative Network Coding
- Wireless Network Coded Systems
 - System Model
 - Random Network Coding
- Testbed Studies
 - Testbed Deployment-Details
 - Image Transmission Example
 - Test Results
- Conclusions

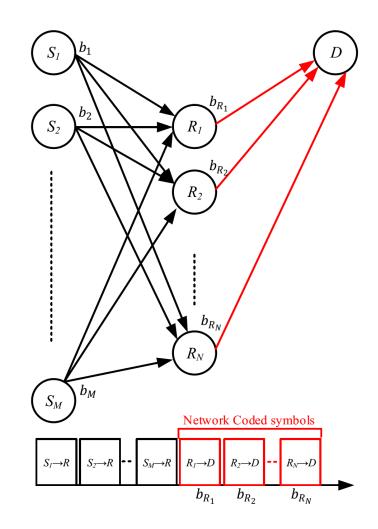
An Option: Network Coding (1/2)

- Conventional communication systems:
 - Network nodes function independently
 - Routing, error control coding and data storage have been designed in accordance with this independency principle
- Data flow rates from source nodes to destination nodes in a network can be increased by transmitting combinations of data [1]
- Stemming from the early works of in the form of multi-level diversity [2]

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, "Network information flow," IEEE Trans.
Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[2] R. Yeung, "Multilevel diversity coding with distortion," Information Theory, IEEE

Transactions on, vol. 41, no. 2, pp. 412–422, Mar 1995.

An Option: Network Coding (2/2)


• Generalized set-up:

1. BROADCAST PHASE

Source nodes transmit information symbols in N orthogonal resource block (time slots or frequency channels) during the multiple access phase (solid black lines) to relay nodes.

2. RELAYING PHASE

N relay nodes perform network coding on the M estimated symbols and transmit in N resource blocks in the to destination

The majority of the literature on network coding targets wired networks (or application layer deployments)

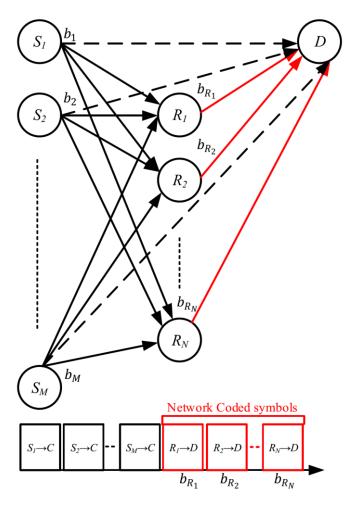
Assumption: no erroneous transmissions

What about error propagation?

Main Idea

Wired Network Coding \neq Wireless Network Coding

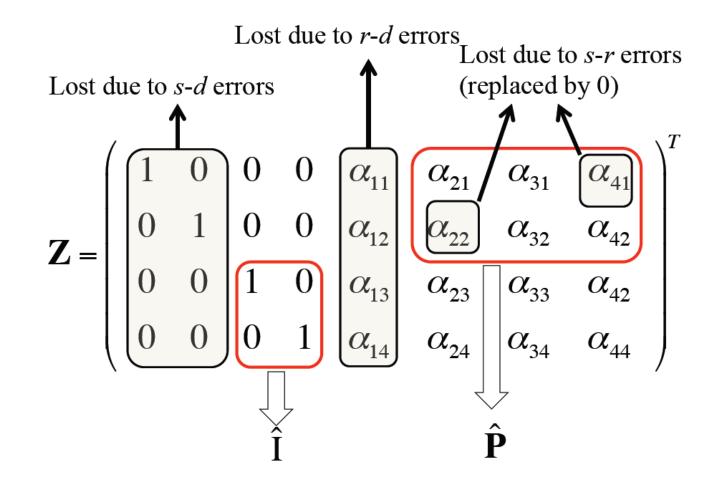
- 1. Fading channels
- 2. Direct source-destination links
 - **Cooperative Diversity**
 - **Detector Design**


+ Wireless Channels

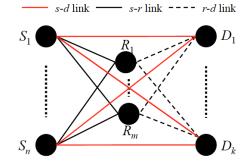
Cooperative Networking

Network Coding

Network Coded Cooperation


Network Coded Cooperation

- Combining network coding and cooperative networking
- Can exploit the intrinsic characteristics of wireless networks to improve
 - Throughput
 - Robustness.
- Based on the preliminary works of Chen, Kishore and Li in [4].

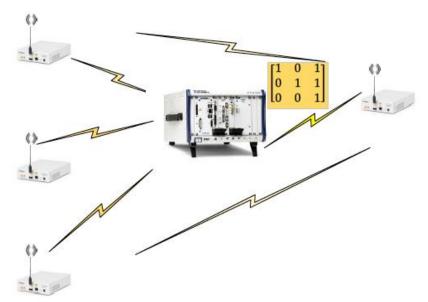

[4] Y. Chen, S. Kishore, and J. Li, "Wireless diversity through network coding," WCNC 2006

Example: 4 source nodes, 4 relay nodes, broadcast transmission

Random Network Coding

 Random network coding at relay nodes

 In presence of direct communication links decoding probability becomes


$$P_{d} = \sum_{k=0}^{n} \sum_{l=0}^{m-k} \sum_{t=0}^{m-l} \left[\binom{n}{k} \phi_{sd}^{k} (1-\phi_{sd})^{n-k} \binom{m}{l} \phi_{rd}^{l} (1-\phi_{rd})^{m-l} \binom{m-l}{t} \left(\frac{k\phi_{sr}}{n} \right)^{t} \left(1-\left(\frac{k\phi_{sr}}{n}\right) \right)^{m-l-t} \right] \\ \times \left[\sum_{p \in \wp_{n}(t)} \frac{\frac{n!}{x(p)} C(p)}{\sum_{p' \in \wp_{n}(t)} \frac{n!}{x(p')} C(p')} \frac{\left(\max_{q}(k,m-l,\hat{S}_{p,1},k) \right)}{\sum_{r=0}^{k} \max_{q}(k,m-l,\hat{S}_{p},r)} \right]$$

$$\phi_u = 1 - \exp\left(\left(-2^{R_u} - 1\right)/\gamma_u\right)$$
 where $u = sd$, sr, rd

[6] S.Tedik Başaran, S. Gökceli, G.Karabulut Kurt, Enver Özdemir, Ergün Yaraneri, "Error Performance Analysis Random Network Coded Cooperative Systems in Wireless Channels," in preparation

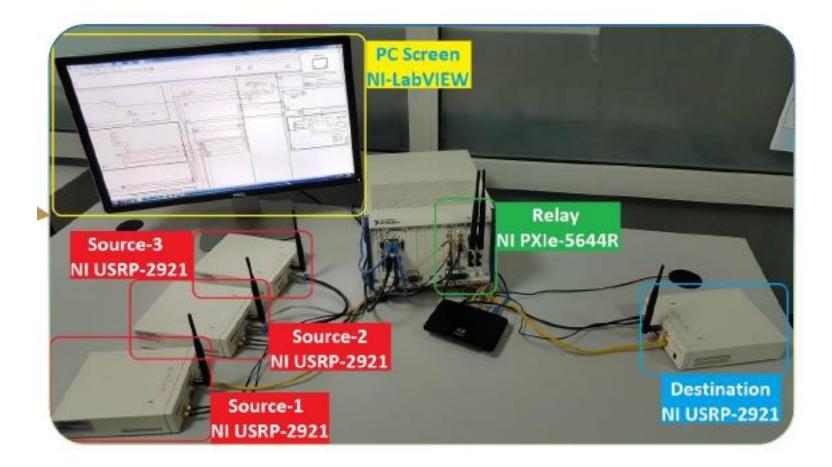
Testbed Studies

- Implemented a cooperative network coded system using software defined radios
- 3 source nodes,
- 1 relay node
- 1 destination node

[10] S. Gökceli, H. Alakoca, S.Tedik Başaran, G.Karabulut Kurt, "OFDMA-based Network Coded Cooperation: Design and Implementation Using Software Defined Radio Nodes", EURASIP Journal on Advances in Signal Processing, EURASIP, 2016, November.

Hardware Details (1/2)

Hardware Components:


- NI USRP-2921: Source and Destination Nodes, Instantaneous bandwidth up to 20 MHz
- NI PXIe-1082 Chassis:
 - NI PXIe-5644R VST: Relay Node,
 - Instantaneous bandwidth up to 80 MHz
 - NI PXI-6683: Clock Signal Source

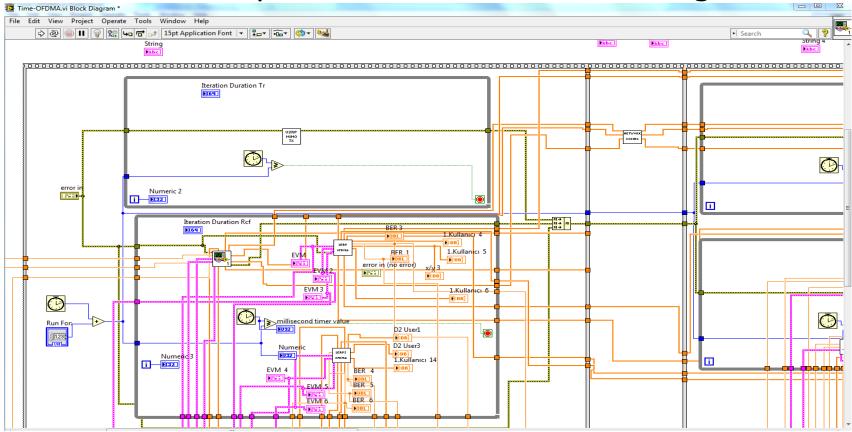
Hardware Details (2/2)

Synchronization Solution:

- Three external 10 MHz signals are provided by NI
 PXI-6683 Timing and Synchronization Module
- These signals are transmitted to two source nodes and destination node via cables
- Remaining source node receives synchronization signal through MIMO cable
- Synchronization configuration in code

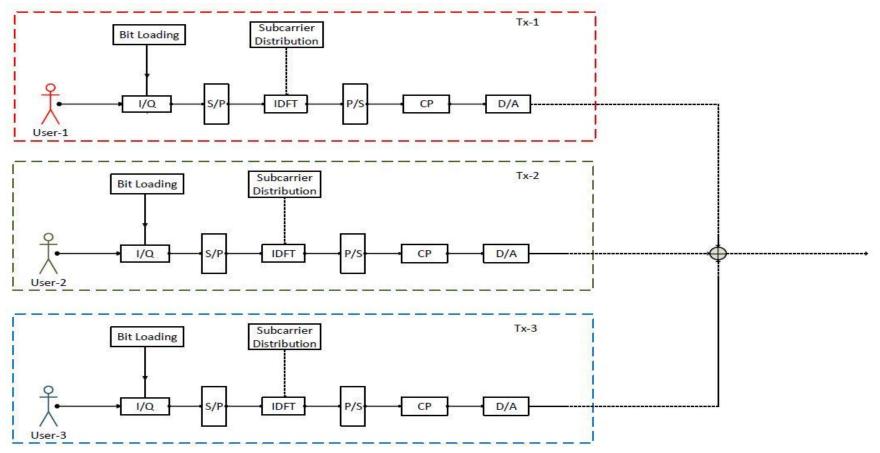
Physical Set-up

Testbed Details (1/8)

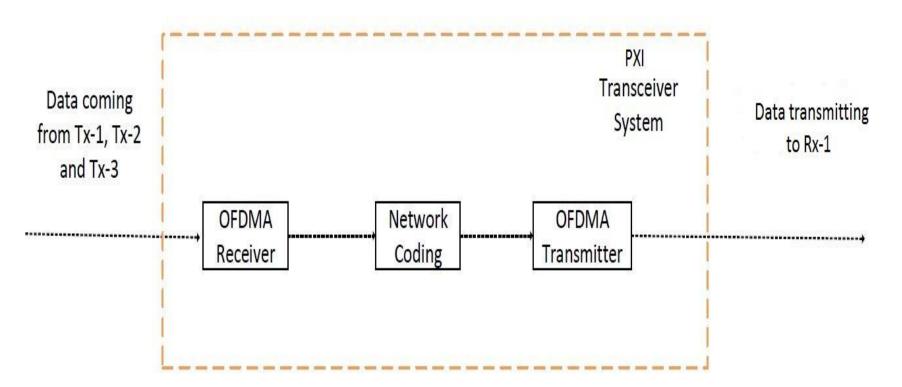

Software Component:

-LabVIEW Software: Visual Programming Language,
Programming with Virtual Instruments (VI)
-Timed Flat Sequence Structure: Main VI of the code,
consists of:

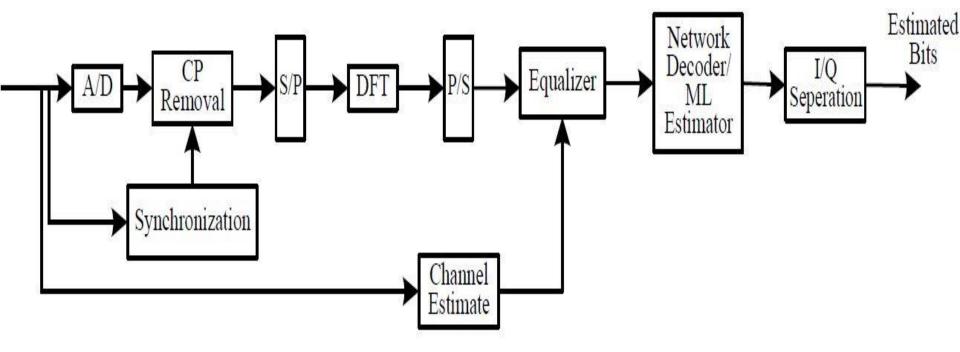
- -Source, relay and destination node SubVI
- -Network coding and decoding SubVI


Testbed Details (2/8)

Timed Flat Sequence Structure VI Block Diagram:


Testbed Details (3/8)

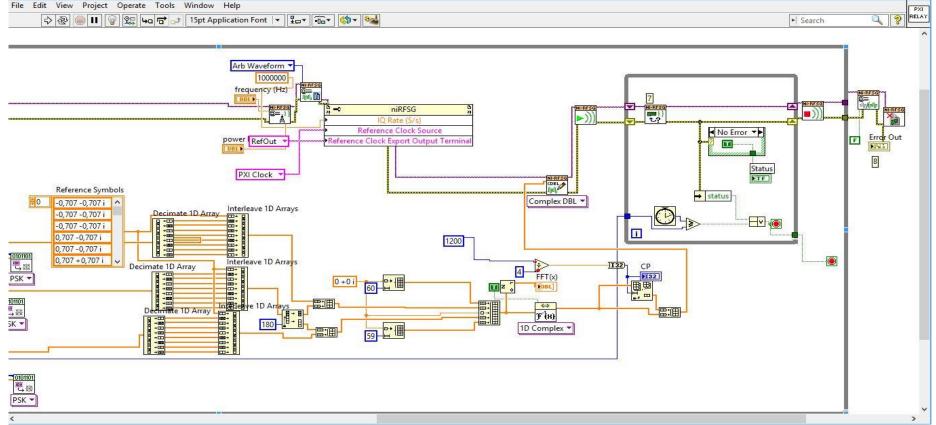
Source node SubVI implementation structure:


Testbed Details (4/8)

Relay node SubVI implementation structure:

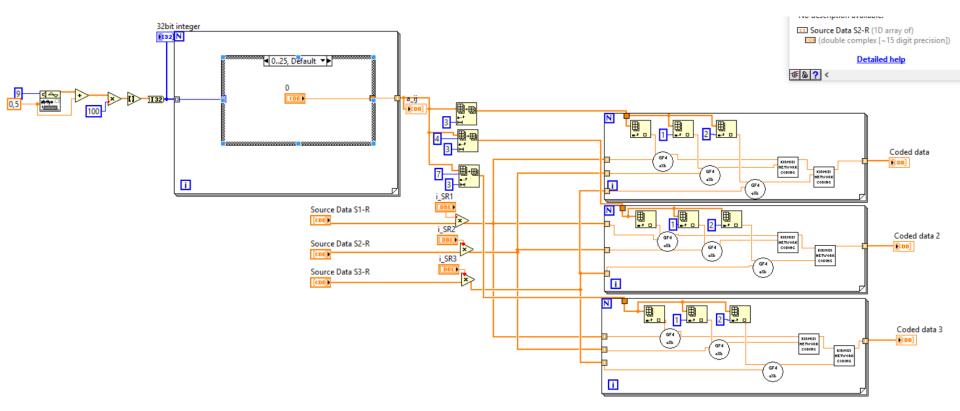
Testbed Details (5/8)

Destination node SubVI implementation structure:



Testbed Details (6/8)

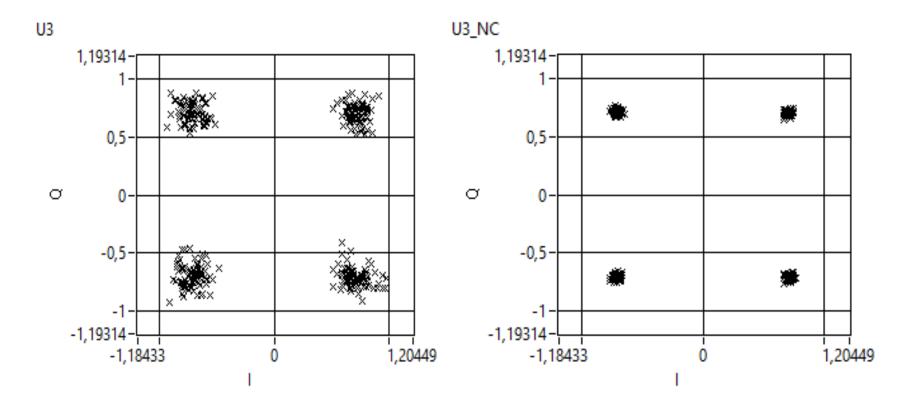
- Example of LabVIEW implementation:
 - -Relay SubVI's transmitter code:
 - -RFSG VI
 - -Modulation Toolkit VI
 - -Signal Processing Library VI
 - -Array functions


Testbed Details (7/8)

Correspondent SubVI:

Testbed Details (8/8)

Block diagram of relay network coding SubVI.



Test Parameters

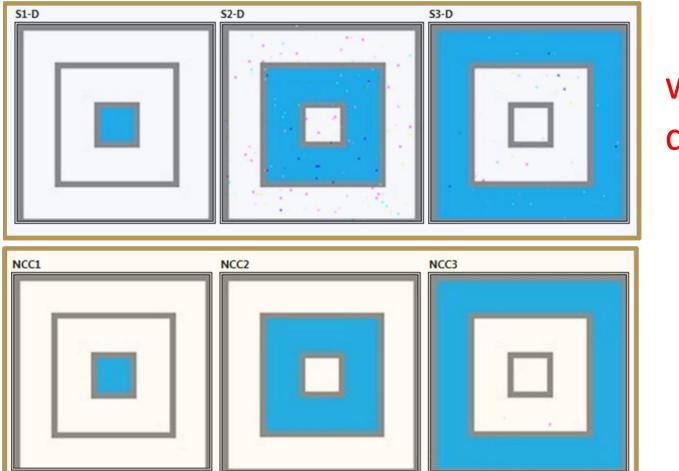
Carrier frequency	2.45 GHz
I/Q data rate	1 MS/sec
Number of bits used in one frame	2080 bits
Number of 4-QAM symbols	1040 samples
Number of subcarriers of the one user data portion	320 samples
Number of reference subcarriers	40 samples
Number of source/relay/destination node	3/1/1
Zero padding/DFT/CP length	120/1200/300 samples
Distance between sources and destination	50 cm

Test Results (1/2)

Exemplary received 4-QAM constellation diagrams:

Test Results – Image Transmission

Image Transmission Implementation:


-Packet Transmission Algorithm:

-Dividing 100x100 pixel images to packets

-Index Portion: Shows packet's index number, %5 of the frame length

-At Rx, by using index portion, packets are determined and put in right order to form image

Test Results – Image Transmission

without direct link

with direct link (NCC)

[11] S. Gökceli, S.Tedik Başaran, G.Karabulut Kurt, 'A Testbed for Image Transmission over a Network Coded Cooperation System', under review, *VTC Fall 2016*

Test Results (2/2)

Decoding performances:

	EVM				Successful Decoding Probability	
	SD	SR	RD			
S1	0,62125 0,98375	0.00075	0.070625	2^q	Simulation Results	Test Results
		0,870625	2	0.091	0.091	
S2	0,657188	1	0,864063	4	0.112	0.111
S 3	0,591563	1	0,870625	8	0.123	0.124
				16	0.127	0.129
				32	0.131	0.128
				64	0.133	0.134
				128	0.132	0.133
				256	0.133	0.133

Conclusions

For practical applicability the impact of the wireless channel needs to be considered
 →Cooperative network coding systems

- Non-zero error/erasure rates
- Direct source destination links

Thank you!

This work is supported by TUBITAK under Grant 113E294 & COST IC1104