How many Mutually Unbiased Bases can exist in Complex Space of Dimension d?

Jonathan Jedwab

Department of Mathematics, Simon Fraser University

Joint work with Lily Yen

Department of Mathematics & Statistics, Capilano University

Outline

- Mutually unbiased bases
- Motivation
- Central question
- Product construction
- Latin squares construction
- Dimension 6
- Zauner's conjecture
- Weiner's dichotomy
- Unextendible sets

Hermitian inner product of vectors is

$$\mathbf{I} \cdot \overline{(\mathbf{I})} + \omega^2 \cdot \overline{(\omega^2)} + \omega \cdot \overline{(\omega)} + \mathbf{I} \cdot \overline{(-\mathbf{I})} + \omega^2 \cdot \overline{(-\omega^2)} + \omega \cdot \overline{(-\omega)} = \mathbf{0}$$

Hermitian inner product of every two distinct vectors is 0: the vectors form an orthogonal basis for \mathbb{C}^6

$$\omega = \mathrm{e}^{2\pi\mathrm{i}/3}$$

Hermitian inner product of vectors is $(I-i)(I+2\omega)$, of magnitude $\sqrt{6}$

(1	- 1	- 1	- 1	- 1	- 1)
(1	ω	ω^{2}	- 1	ω	ω^{2})
(1	ω^2	ω	- 1	ω^2	ω)
(1	1	1	<u>-1</u>	-1	<u>-I</u>)
(1	ω	ω^2	– I	$-\omega$	$-\omega^2$)
(I	ω^2	ω	– I	$-\omega^2$	$-\omega$)

(1	T	ω	i	i	i ω)
(1	ω	- 1	i	i ω	i)
(1	ω^2	ω^2	i	i ω^2	i ω^2)
(1	I	ω	—i	—i	$-i\omega^2$)
(1	ω	ı	—i	$-i\omega$	<u></u> —і)
(-1	ω^2	ω^2	—i	$-i\omega^2$	$-i\omega^2$)

Hermitian inner product of every two vectors from distinct orthogonal bases has constant magnitude:

the two bases are mutually unbiased

(I	ı	- 1	1	1	- 1)
(ı	ω	ω^{2}	- 1	ω	ω^{2})
(1	ω^{2}	ω	1	ω^{2}	ω)
(1	- 1	П	-1	-1	-1)
(I	ω	ω^2	– I	$-\omega$	$-\omega^2$)
(I	ω^2	ω	– I	$-\omega^2$	$-\omega$)

(I	I	ω	i	i	i ω)
(1	ω	- 1	i	i ω	i)
(1	ω^2	ω^2	i	i ω^2	i ω^2)
(1	- 1	ω	—i	—i	$-i\omega^2$)
(1	ω	T	—i	$-i\omega$	—i)
(1	ω^2	ω^2	<u></u> —і	$-i\omega^2$	$-i\omega^2$)

($\sqrt{6}$	0	0	0	0	0)
(0	$\sqrt{6}$	0	0	0	0)
(0	0	$\sqrt{6}$	0	0	0)
(0	0	0	$\sqrt{6}$	0	0)
(0	0	0	0	$\sqrt{6}$	0)
(0	0	0	0	0	$\sqrt{6}$)

3 mutually unbiased bases (MUBs) in \mathbb{C}^6

 Schwinger (1960): when a quantum system is prepared in a state belonging to one basis, all outcomes of measurement with respect to any other basis are equally probable

- Many applications in quantum physics
 - * secure quantum key exchange (Bennett Brassard 1984)
 - * quantum state determination (Ivanović 1981)
 - * quantum state reconstruction (Wootters Fields 1989)
 - * detection of quantum entanglement (Spengler et al 2012)

 Jonathan Jedwah
 18 April 2016

2010 MUBs survey (Durt Englert Bengtsson Życzkowski)
 contains almost 200 references!

- Close connections with many other combinatorial structures
 - finite projective planes (Saniga Planat Rosu 2004)
 - * mutually orthogonal Latin squares (Wocjan Beth 2005)
 - relative difference sets (Godsil Roy 2009)
 - ★ complex Hadamard matrices (Szöllősi 2011)
 - * complex equiangular lines (Jedwab Wiebe 2015+) Jonathan Jedwab 18 April 2016

$$(\sqrt{2} \ 0)$$

$$\omega = \mathrm{e}^{2\pi\mathrm{i}/3}$$

$$\begin{pmatrix} & \mathbf{I} & \mathbf{I} & \omega & \mathbf{I} \\ & & \mathbf{I} & \omega & \mathbf{I} & \mathbf{I} \end{pmatrix}$$

$$\begin{pmatrix} & \mathbf{I} & \omega^2 & \omega^2 & \mathbf{I} \end{pmatrix}$$

5 MUBs in C⁴

```
      ( 2 0 0 0 0 )

      ( 0 2 0 0 )

      ( 0 0 2 0 )

      ( 0 0 0 2 0 )
```

- At most d+I (Delsarte Goethals Seidel 1975)
 - * proof using Jacobi polynomials, or else linear algebra

- Constructions of d+1 MUBs in \mathbb{C}^d for all prime powers d
 - * finite fields (Wootters Fields 1989)
 - * eigenbases of operators in Weyl-Heisenberg group
 - ★ estimation of exponential sums
 - * relative difference sets, planar functions, symplectic spreads, complex Hadamard matrices,...

18 April 2016

• $\mu(d) \le d + 1$ (Delsarte Goethals Seidel 1975)

• $\mu(d) = d + 1$ for prime powers d (Wootters Fields 1989)

d	2	3	4	5	6	7	8	9	10	П	12	13
$\mu(d) \leq$	3	4	5	6	7	8	9	10	П	12	13	14
μ (d) \geq	3	4	5	6		8	9	10		12		14

14	15	16	17	18	19	20	21	22	23	24	25	26
15	16	17	18	19	20	21	22	23	24	25	26	27
		17	18		20				24		26	

• $\mu(d) \le d + 1$ (Delsarte Goethals Seidel 1975)

• $\mu(d) = d + 1$ for prime powers d (Wootters Fields 1989)

• $\mu(d)$ is unknown for every non-prime-power d > 1

10 Most Annoying Questions

 How many mutually unbiased bases are there in non-primepower dimensions?

#8 of The ten most annoying questions in quantum computing, Scott Aaronson's blog, 2006

#3 of The NEW ten most annoying questions in quantum computing, Scott Aaronson's blog, 2014

$$\begin{array}{c|cccc}
(& I & I & \omega \\
\hline
(& I & C & I \\
\hline
(& I & \omega^2 & \omega^2)
\end{array}$$

Jonathan Jedwab 18 April 2016

- 1	ı	I	- 1	П	- 1
- 1	ω	ω^{2}	-1	ω	ω^{2}
- 1	ω^2	ω	- 1	ω^2	ω
- 1	Т		– I	– I	– I
- 1	ω	ω^{2}	-1	$-\omega$	$-\omega^2$
- 1	ω^2	ω	-1	$-\omega^2$	$-\omega$

I	I	ω	i	i	i ω
- 1	ω	1	i	i ω	i
1	ω^{2}	ω^{2}	i	i ω^2	i ω^2
- 1	- 1	ω	<u></u> —і	—i	$-i\omega^2$
- 1	ω	1	—i	$-$ i ω	—i
	ω^{2}	ω^2	—i	$-i\omega^2$	$-i\omega^2$

$\sqrt{6}$	0	0	0	0	0
0	$\sqrt{6}$	0	0	0	0
0	0	$\sqrt{6}$	0	0	0
0	0	0	$\sqrt{6}$	0	0
0	0	0	0	$\sqrt{6}$	0
0	0	0	0	0	$\sqrt{6}$

Klappenecker Rötteler 2004

 $\mu(mn) \ge \min(\mu(m), \mu(n))$

Construct MUBs in dimension $d = 3^4 \cdot 5^3 \cdot 7^2 \cdot 11^2$

Jonathan Jedwab 18 April 2016

• $\mu(d) \le d + 1$ (Delsarte Goethals Seidel 1975)

• $\mu(d) = d + 1$ for prime powers d (Wootters Fields 1989)

• $\mu(d) \ge 1 + \text{(smallest prime power in factorisation of } d\text{)}$ (Klappenecker Rötteler 2004)

d	2	3	4	5	6	7	8	9	10	П	12	13
μ (d) \leq												
μ (d) \geq	3	4	5	6	3	8	9	10	3	12	4	14

14	15	16	17	18	19	20	21	22	23	24	25	26
15	16	17	18	19	20	21	22	23	24	25	26	27
3	4	17	18	3	20	5	4	3	24	4	26	3

```
I 2 3
3 I 2
2 3 I
I 2 3
2 3 I
3 I 2
```

```
11 22 33
32 13 21
23 31 12
```

2 mutually orthogonal Latin squares of order 3

	2	3	- 1	0	0	0		0	0	0	
3		2	0	2	0	0	0	2	2	0	0
2	3	1	0	0	3	3	0	0	0	3	0
	2	3	- 1	0	0	0	0		0	- 1	0
2	3	I	0	2	0	2	0	0	0	0	2
3	1	2	0	0	3	0	3	0	3	0	0
ī	2	3	1	0	0	ï	0	0	ī	0	0
i		3	0	0 2	0	0	0	0	0	0	0
									_		
1	2	3	0	2	0	0	2	0	0	2	0
1	2	3	0	2	0	0	2	0	0	2	0
I	2 2	3	0	2 0	0 3	0	0	0 3	0	2 0	0

Jonathan Jedwab 18 April 2016

$$\omega$$
 ω^2 ω ω^2 ω $\omega = e^{2\pi i/3}$

\										,
(1	0	0	0	ω	0	0	0	ω^2)
(1	0	0	0	ω^2	0	0	0	ω)
(0	1	0	0	0	1	1	0	0)
(0	ı	0	0	0	ω	ω^2	0	0)
(0	1	0	0	0	ω^2	ω	0	0)
(0	0	1	1	0	0	0	- 1	0)
(0	0	ı	ω	0	0	0	ω^2	0)
(0	0		ω ²	0	0	0	w	0)

(T	0	0	0	0	1	0	-1	0)
(1	0	0	0	0	ω	0	ω^2	0)
(1	0	0	0	0	ω^2	0	ω	0)
(0	1	0	1	0	0	0	0	1)
(0	1	0	ω	0	0	0	0	ω^2)
(0	1	0	ω^2	0	0	0	0	ω)
(0	0	1	0	I	0	1	0	0)
(0	0	1	0	ω	0	ω^2	0	0)
(0	0	1	0	ω^2	0	ω	0	0)

(T	0	0	1	0	0	1	0	0)
(1	0	0	ω	0	0	ω^2	0	0)
(1	0	0	ω^2	0	0	ω	0	0)
(0	1	0	0	1	0	0	Т	0)
(0	1	0	0	ω	0	0	ω^2	0)
(0	1	0	0	ω^2	0	0	ω	0)
(0	0	1	0	0	1	0	0	Т)
(0	0	1	0	0	ω	0	0	ω^2)
(0	0	1	0	0	ω^2	0	0	ω)

$$\omega = \mathrm{e}^{2\pi\mathrm{i}/3}$$

(1	1	1	0	0	0	0	0	0)
(1	ω	ω^2	0	0	0	0	0	0)
(1	ω^2	ω	0	0	0	0	0	0)
(0	0	0	1	1	-1	0	0	0)
(0	0	0	1	ω	ω^2	0	0	0)
(0	0	0	-1	ω^2	ω	0	0	0)
(0	0	0	0	0	0	1	1	1)
(0	0	0	0	0	0	1	ω	ω^2)
(0	0	0	0	0	0	1	ω^2	ω)

```
I 2 3
3 I 2
2 3 I
I 2 3
2 3 I
3 I 2
```

```
11 22 33
32 13 21
23 31 12
```

2 mutually orthogonal Latin squares of order 3

Constructed 2+2 MUBs in \mathbb{C}^{3^2}

- If there are w mutually orthogonal Latin squares of order s then there are w+2 MUBs in \mathbb{C}^{s^2} (Wocjan Beth 2005)
 - ★ 4 mutually orthogonal Latin squares of order 26 gives
 6 MUBs in C^{2²·13²} (product construction gives only 5)
 - * combine with 8 MUBs in \mathbb{C}^7 using product construction to give 6 MUBs in $\mathbb{C}^{2^2\cdot 13^2\cdot 7}$
 - improves on production construction alone for infinitely many dimensions

$$\mu(mn) \ge \min(\mu(m), \mu(n))$$

d	2	3	4	5	6	7	8	9	10	П	12	13
μ (d) \leq	3	4	5	6	7	8	9	10	H	12	13	14
μ (d) \geq	3	4	5	6	3	8	9	10	3	12	4	14

14	15	16	17	18	19	20	21	22	23	24	25	26
15	16	17	18	19	20	21	22	23	24	25	26	27
3	4	17	18	3	20	5	4	3	24	4	26	3

($\sqrt{6}$	0	0	0	0	0)
(0	$\sqrt{6}$	0	0	0	0)
(0	0	$\sqrt{6}$	0	0	0)
(0	0	0	$\sqrt{6}$	0	0)
(0	0	0	0	$\sqrt{6}$	0)
(0	0	0	0	0	$\sqrt{6}$)

Basis I

Basis 2

- Infinitely many sets of 3 MUBs in \mathbb{C}^6
 - ⋆ one-parameter family (Zauner 1999)
 - * another one-parameter family (Jaming Matolcsi Móra Szöllősi Weiner 2009): "Even in the [simplest case] the calculations are rather long and cumbersome, and not very instructive"
 - * two-parameter family (Szöllősi 2010)

• But no known construction of set of 4 MUBs in \mathbb{C}^6

Unextendible MUBs

3 unextendible MUBs in \mathbb{C}^d

Zauner's Conjecture

- Conjecture (Zauner 1999). Every set of 3 MUBs in \mathbb{C}^6 is unextendible (so $\mu(6)=3$)
 - * "a growing consensus" in favour, yet concluded "We have almost no evidence either way" (Bengtsson 2007)
 - * holds when one of the 3 MUBs is the standard basis and another is constrained to belong to the "Fourier family F(a,b)" (Jaming et al 2009)
 - * "By now the evidence for [Zauner's] conjecture is overwhelming, but not quite conclusive" (Durt Englert Bengtsson Życzkowski 2010)

Weiner's Dichotomy

- Explicit construction of $(d+1)^{th}$ MUB from d MUBs in \mathbb{C}^d (Weiner 2013)
 - * proof uses maximal abelian *-subalgebras
 - * every set of d MUBs in \mathbb{C}^d is extendible to a set of size d+1
 - * dichotomy: $\mu(d) \neq d$

How Many MUBs can exist in \mathbb{C}^d ?

• $\mu(d) \le d + 1$ (Delsarte Goethals Seidel 1975)

• $\mu(d) = d + 1$ for prime powers d (Wootters Fields 1989)

• $\mu(d) \ge 1 + \text{(smallest prime power in factorisation of } d\text{)}$ (Klappenecker Rötteler 2004)

• $\mu(d) \neq d$ (Weiner 2013)

How Many MUBs can exist in \mathbb{C}^d ?

d	2	3	4	5	6	7	8	9	10	П	12	13
μ (d) \leq	3	4	5	6	7	8	9	10	11	12	13	14
μ (d) \geq	3	4	5	6	3	8	9	10	3	12	4	14
μ(d) ≠					6				10		12	

14	15	16	17	18	19	20	21	22	23	24	25	26
15	16	17	18	19	20	21	22	23	24	25	26	27
3	4	17	18	3	20	5	4	3	24	4	26	3
14	15			18		20	21	22		24		26

Unextendible MUBs

• How many MUBs can exist in \mathbb{C}^d ?

- When and why is a set of MUBs unextendible?
 - * seek simple criterion or insight

3 strongly unextendible MUBs in \mathbb{C}^d (Grassl)

• How many MUBs can exist in \mathbb{C}^d ?

- When and why is a set of MUBs unextendible?
 - * seek simple criterion or insight
 - * strongly unextendible is a more demanding condition, but presumably easier to establish

- $\mu(d) \le d + 1$ (Delsarte Goethals Seidel 1975)
 - * there are at most d(d+1) vectors in \mathbb{C}^d of norm d whose pairwise Hermitian inner products each have magnitude 0 or \sqrt{d}
 - * so every set of d+1 MUBs in \mathbb{C}^d is strongly unextendible

```
      ( 2 0 0 0 )

      ( 0 2 0 0 )

      ( 0 0 2 0 )

      ( 0 0 0 2 )
```

5 strongly unextendible MUBs in \mathbb{C}^4

- Every set of 3 MUBs in \mathbb{C}^6 arising from the product construction is strongly unextendible (McNulty Weigert 2012)
 - * proof relies on classifying all such sets of 3 MUBs in \mathbb{C}^6 , up to equivalence

r MUBs in \mathbb{C}^m

r MUBs in \mathbb{C}^n

r MUBs in \mathbb{C}^{mn}

- Infinite family of $p^2 p + 2$ strongly unextendible MUBs in \mathbb{C}^{p^2} , for all primes p congruent to 3 modulo 4 (Szántó 2016)
 - * proof using complementary decompositions of $M_p \otimes M_p$ (M_p is the algebra of matrices acting on \mathbb{C}^p)
 - * only known infinite family of dimensions d containing fewer than $\mu(d)$ strongly unextendible MUBs
 - * ratio $(p^2 p + 2) / \mu(p^2) \rightarrow I$ as $p \rightarrow \infty$

```
      ( 2 0 0 0 0 )

      ( 0 2 0 0 )

      ( 0 0 2 0 )

      ( 0 0 0 2 0 )
```

3 strongly unextendible MUBs in \mathbb{C}^4

(Mandayam Bandyopadhyay Grassl Wootters 2014)

- 3 strongly unextendible MUBs in \mathbb{C}^4 (yet $\mu(4)=5$)
 5 strongly unextendible MUBs in \mathbb{C}^8 (yet $\mu(8)=9$)
 (Mandayam Bandyopadhyay Grassl Wootters 2014)
 - constructed from maximal commuting classes of Pauli operators
 - * computational proof of strong unextendibility using Gröbner bases
 - * conjecture: $2^{m-1} + 1$ strongly unextendible MUBs in \mathbb{C}^{2^m}
 - conjecture fails if restrict to Pauli operators
 (Thas 2014+, using finite geometry)

• Conjecture: $2^{m-1} + 1$ strongly unextendible MUBs in \mathbb{C}^{2^m} (Mandayam et al 2014)

```
      ( 2 0 0 0 0 )

      ( 0 2 0 0 )

      ( 0 0 2 0 )

      ( 0 0 0 2 0 )
```

3 strongly unextendible MUBs in \mathbb{R}^4

• Conjecture: $2^{m-1} + 1$ strongly unextendible MUBs in \mathbb{C}^{2^m} (Mandayam et al 2014)

- At most $\frac{1}{2}d+I$ MUBs in \mathbb{R}^d (Delsarte Goethals Seidel 1975)
 - * every set of $\frac{1}{2}d + I$ MUBs in \mathbb{R}^d is strongly unextendible over \mathbb{R}

- Construction of $\frac{1}{2}d+1$ MUBs in \mathbb{R}^d when $d=2^m$ for even m (Cameron Seidel 1973)
 - * $2^{m-1} + 1$ MUBs in \mathbb{R}^{2^m} for even m

• Conjecture: $2^{m-1} + 1$ strongly unextendible MUBs in \mathbb{C}^{2^m}

• Construction of $2^{m-1} + 1$ MUBs in \mathbb{R}^{2^m} for even m

- Theorem: these MUBs are strongly unextendible! (Jedwab Yen)
 - * conjecture holds for all even m
 - * proof using only elementary linear algebra
 - * ratio $(2^{m-1}+1)/\mu(2^m) \rightarrow 1/2$ as $m \rightarrow \infty$
 - * evidence that $\mu(6) = 3$ is not convincing

Open Questions

Does Mandayam et al conjecture hold for odd m?

• Is Zauner's conjecture that $\mu(6) = 3$ true?

• What is the smallest size of a (strongly) unextendible set of MUBs in \mathbb{C}^d ? Can the ratio of unextendible set size to $\mu(d)$ be asymptotically less than 1/2?

Can we find new construction methods for MUBs from