Defining the q-analogue of a matroid

Relinde Jurrius (joint work with Ruud Pellikaan)

Université de Neuchâtel, Switzerland

Network Coding and Designs April 5, 2016 Matroid: a pair (E, \mathcal{I}) with

- ► *E* finite set;
- *I* ⊆ 2^E family of subsets of *E*, the *independent sets*, with:

 (11) Ø ∈ *I*
 (12) If *A* ∈ *I* and *B* ⊆ *A* then *B* ∈ *I*.

 (13) If *A*, *B* ∈ *I* and |*A*| > |*B*| then there is an *a* ∈ *A* \ *B* such that
 B ∪ {*a*} ∈ *I*.

Examples:

- ► Set of vectors; independence = linear independence
- ► Set of edges of a graph; independence = cycle free

A matroid is also a pair (E, r) with

- ► *E* finite set;
- ► $r: 2^E \to \mathbb{N}_0$ a function, the *rank function*, with for all $A, B \in E$: (r1) 0 < r(A) < |A|
 - (r2) If $\overline{A} \subseteq B$ then $r(A) \leq r(B)$.
 - (r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodular)
- r(A) = size of largest independent set contained in A $\mathcal{I} = \{$ subsets whose size is equal to their rank $\}$

Fact: a linear code gives a matroid with

E = index set for columns of generator matrix

r(J) = dimension of subspace spanned by vectors of J

Theorem

The Tutte polynomial of a matroid determines the (extended) weight enumerator of the corresponding code.

ULTIMATE GOAL: Find a *q*-analogue of this correspondence.

q-Analogues

Finite set \longrightarrow finite dimensional vectorspace over \mathbb{F}_q

Example

 $\begin{bmatrix} n \\ k \end{bmatrix}_{q}$ = number of k-dim subspaces of n-dim vectorspace over \mathbb{F}_{q}

$$= \prod_{i=0}^{k-1} rac{q^n-q^i}{q^k-q^i}$$

q-Analogues

finite set	finite space \mathbb{F}_q^n
element	1-dim subspace
size	dimension
п	$rac{q^n-1}{q-1}$
intersection	intersection
union	sum
complement	?

From q-analogue to 'normal': let $q \rightarrow 1$.

Candidates for complement A^c of $A \subseteq \mathbb{F}_q^n$:

- All vectors outside A But: not a space
- Orthogonal complement
 But: A ∩ A[⊥] can be nontrivial
- ► Quotient space 𝔽ⁿ_q/A But: changes ambient space
- ► Subspace such that A ⊕ A^c = 𝔽ⁿ_q But: not unique

q-Matroid: a pair (E, \mathcal{I}) with

- *E* finite dimensional vector space;
- \mathcal{I} family of subspaces of E, the *independent spaces*, with:

(11)
$$\mathbf{0} \in \mathcal{I}$$

(12) If $A \in \mathcal{I}$ and $B \subseteq A$ then $B \in \mathcal{I}$.
(13) If $A, B \in \mathcal{I}$ and dim $A > \dim B$ then there is a 1-dimensional

subspace $a \subseteq A$, $a \not\subseteq B$ such that $B + a \in \mathcal{I}$.

A q-matroid could also be a pair (E, r) with

- ► *E* finite dimensional vector space;
- r: {subspaces of E} → N₀ a function, the rank function, with for all A, B ⊆ E:
 - (r1) $0 \leq r(A) \leq \dim A$
 - (r2) If $A \subseteq B$ then $r(A) \leq r(B)$.
 - (r3) $r(A+B) + r(A \cap B) \le r(A) + r(B)$ (semimodular)
- r(A) = dimension of largest independent space contained in A $\mathcal{I} = \{$ subspaces whose dimension is equal to their rank $\}$

Example
Let
$$E = \mathbb{F}_2^4$$
 and $\mathcal{I} = \left\{ \left\langle \begin{array}{ccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right\rangle$ and all its subspaces $\right\}$.
 \mathcal{I} satisfies (I1),(I2),(I3), and r satisfies (r1),(r2). But:

$$A = \left\langle \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right\rangle \quad B = \left\langle \begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right\rangle$$

Then $r(A + B) + r(A \cap B) = 2 + 1 > 1 + 1 = r(A) + r(B)$!

Problem: $(r1),(r2),(r3) \Rightarrow (I1),(I2),(I3)$; but not \Leftarrow .

Possible solutions:

- ► Keep (I1),(I2),(I3) and find "relaxation" of (r3).
- Keep (r1),(r2),(r3) and find extra axiom for \mathcal{I} .

New matroids from old

Let M a matroid on E with |E| = n and r(M) = k.

- Duality: [n, n k]
- Deletion: [n-1, k]
- Contraction: [n-1, k-1]
- \blacktriangleright First deletion, then duality = first duality, then contraction

q-analogue of these constructions?

New q-matroids from old

- ▶ Deletion [n-1, k] and contraction [n-1, k-1]
 - Definition and proof in terms of rank function
 - Also in terms of independent spaces
- Duality [n, n-k]
 - Definition and proof in terms of rank function
 - ► No clue how to prove it using independent spaces
 - Coincides with duality in rank metric codes
- \blacktriangleright First deletion, then duality = first duality, then contraction
 - Proven: bases are the same

Problem: $(r1),(r2),(r3) \Rightarrow (I1),(I2),(I3)$; but not \Leftarrow .

Possible solutions:

- 1. Keep (I1),(I2),(I3) and find "relaxation" of (r3).
- 2. Keep (r1),(r2),(r3) and find extra axiom for \mathcal{I} .

Conclusion: solution 2.

Example
Let
$$E = \mathbb{F}_2^4$$
 and $\mathcal{I} = \left\{ \left\langle \begin{array}{ccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right\rangle$ and all its subspaces $\right\}$.
 \mathcal{I} satisfies (I1),(I2),(I3), and r satisfies (r1),(r2). But:

$$A = \left\langle \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right\rangle \quad B = \left\langle \begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right\rangle$$

Then $r(A + B) + r(A \cap B) = 2 + 1 > 1 + 1 = r(A) + r(B)$.

Possible new axiom:

(14) For all $A \subseteq E$, span $\{I \in \mathcal{I} : I \subseteq A\}$ is either **0** or A.

Proven: $(r1),(r2),(r3) \Rightarrow (I4)$

Sufficient condition

Lemma Let $A \subseteq E$ and I a maximal independent subspace of A. Let $x \subseteq E$ a 1-dim subspace. Then I + x contains a maximal independent subspace of A + x.

```
Proven: (I1),(I2),(I3) + Lemma \Rightarrow (r1),(r2),(r3)
```

To do: $(I1),(I2),(I3),(I4) \Rightarrow Lemma$

What's next?

Right now:

► Prove (I4) suffices (or find a different solution)

Soon:

► More cryptomorphic descriptions (bases, circuits, flats, ...)

Dots on the horizon:

- q-analogue of Tutte polynomial
- Link with rank weight enumerator
- Rank metric codes that are not \mathbb{F}_{q^m} -linear
- Link with other q-analogues?
- ► Do all *q*-matroids come from rank metric codes?

Thank you for your attention.