Defining the q-analogue of a matroid

Relinde Jurrius (joint work with Ruud Pellikaan)

Université de Neuchâtel, Switzerland

Network Coding and Designs April 5, 2016

Matroid: a pair (E, \mathcal{I}) with

- \triangleright E finite set:
- ► $\mathcal{I} \subseteq 2^E$ family of subsets of E , the *independent sets*, with: (I1) $\emptyset \in \mathcal{I}$ (I2) If $A \in \mathcal{I}$ and $B \subseteq A$ then $B \in \mathcal{I}$. (I3) If $A, B \in \mathcal{I}$ and $|A| > |B|$ then there is an $a \in A \setminus B$ such that $B \cup \{a\} \in \mathcal{I}.$

Examples:

- \triangleright Set of vectors; independence $=$ linear independence
- \triangleright Set of edges of a graph; independence $=$ cycle free

A matroid is also a pair (E, r) with

- \triangleright E finite set;
- \triangleright $r: 2^E \rightarrow \mathbb{N}_0$ a function, the *rank function*, with for all $A, B \in E$: $(r1)$ 0 $\leq r(A) \leq |A|$ (r2) If $A \subseteq B$ then $r(A) \le r(B)$. (r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodular)
- $r(A)$ = size of largest independent set contained in A $\mathcal{I} = \{\text{subsets whose size is equal to their rank}\}\$

Fact: a linear code gives a matroid with

- $E =$ index set for columns of generator matrix
- $r(J)$ = dimension of subspace spanned by vectors of J

Theorem

The Tutte polynomial of a matroid determines the (extended) weight enumerator of the corresponding code.

ULTIMATE GOAL: Find a q-analogue of this correspondence.

q-Analogues

Finite set \longrightarrow finite dimensional vectorspace over \mathbb{F}_q

Example

$\lceil n$ k 1 q

 $=$ $\,$ number of *k*-dim subspaces of *n*-dim vectorspace over \mathbb{F}_q

$$
= \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}
$$

q-Analogues

From q-analogue to 'normal': let $q \rightarrow 1$.

Candidates for complement A^c of $A \subseteq \mathbb{F}_q^n$:

- \blacktriangleright All vectors outside A But: not a space
- \triangleright Orthogonal complement But: $A \cap A^\perp$ can be nontrivial
- \blacktriangleright Quotient space \mathbb{F}_q^n/A But: changes ambient space
- ► Subspace such that $A \oplus A^c = \mathbb{F}_q^n$ But: not unique

 q -Matroid: a pair (E, \mathcal{I}) with

- \triangleright E finite dimensional vector space;
- \triangleright *I* family of subspaces of *E*, the *independent spaces*, with:

\n- (11)
$$
0 \in \mathcal{I}
$$
\n- (12) If $A \in \mathcal{I}$ and $B \subseteq A$ then $B \in \mathcal{I}$.
\n- (13) If $A, B \in \mathcal{I}$ and $\dim A > \dim B$ then there is a 1-dimensional subspace $a \subseteq A$, $a \not\subseteq B$ such that $B + a \in \mathcal{I}$.
\n

A q-matroid could also be a pair (E, r) with

- \blacktriangleright E finite dimensional vector space;
- \triangleright r : {subspaces of E } \rightarrow \mathbb{N}_0 a function, the *rank function*, with for all $A, B \subseteq E$:
	- $(r1)$ $0 \le r(A) \le \dim A$
	- (r2) If $A \subseteq B$ then $r(A) \le r(B)$.
	- (r3) $r(A + B) + r(A \cap B) \le r(A) + r(B)$ (semimodular)
- $r(A) =$ dimension of largest independent space contained in A $\mathcal{I} = \{$ subspaces whose dimension is equal to their rank

Example
Let
$$
E = \mathbb{F}_2^4
$$
 and $\mathcal{I} = \left\{ \left\langle \begin{array}{ccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right\rangle$ and all its subspaces
 \mathcal{I} satisfies (11),(12),(13), and *r* satisfies (r1),(r2). But:

$$
A = \left\langle \begin{array}{rrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right\rangle \quad B = \left\langle \begin{array}{rrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right\rangle
$$

Then $r(A + B) + r(A \cap B) = 2 + 1 > 1 + 1 = r(A) + r(B)$!

Problem: $(r1)$, $(r2)$, $(r3)$ \Rightarrow (11) , (12) , (13) ; but not \Leftarrow .

Possible solutions:

- Exerp (11) , (12) , (13) and find "relaxation" of (17) .
- Example Keep (r1), (r2), (r3) and find extra axiom for \mathcal{I} .

New matroids from old

Let M a matroid on E with $|E| = n$ and $r(M) = k$.

- ► Duality: $[n, n k]$
- \triangleright Deletion: $[n-1, k]$
- \triangleright Contraction: $[n-1, k-1]$
- First deletion, then duality $=$ first duality, then contraction

q-analogue of these constructions?

New q-matroids from old

- \triangleright Deletion $[n 1, k]$ and contraction $[n 1, k 1]$
	- \triangleright Definition and proof in terms of rank function
	- \triangleright Also in terms of independent spaces
- \triangleright Duality $[n, n-k]$
	- \triangleright Definition and proof in terms of rank function
	- \triangleright No clue how to prove it using independent spaces
	- \triangleright Coincides with duality in rank metric codes
- \triangleright First deletion, then duality $=$ first duality, then contraction
	- \blacktriangleright Proven: bases are the same

Problem: $(r1)$, $(r2)$, $(r3)$ \Rightarrow $(l1)$, $(l2)$, $(l3)$; but not \Leftarrow .

Possible solutions:

- 1. Keep (I1),(I2),(I3) and find "relaxation" of (r3).
- 2. Keep $(r1)$, $(r2)$, $(r3)$ and find extra axiom for \mathcal{I} .

Conclusion: solution 2.

Example
Let
$$
E = \mathbb{F}_2^4
$$
 and $\mathcal{I} = \left\{ \left\langle \begin{array}{ccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right\rangle$ and all its subspaces
 \mathcal{I} satisfies (11),(12),(13), and *r* satisfies (r1),(r2). But:

$$
A = \left\langle \begin{array}{rrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right\rangle \quad B = \left\langle \begin{array}{rrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right\rangle
$$

Then $r(A + B) + r(A \cap B) = 2 + 1 > 1 + 1 = r(A) + r(B)$.

Possible new axiom:

(I4) For all $A \subseteq E$, span $\{I \in \mathcal{I} : I \subseteq A\}$ is either 0 or A.

Proven: $(r1)$, $(r2)$, $(r3) \Rightarrow (14)$

Sufficient condition

Lemma Let $A \subseteq E$ and I a maximal independent subspace of A. Let $x \subseteq E$ a 1-dim subspace. Then $I + x$ contains a maximal independent subspace of $A + x$.

```
Proven: (11), (12), (13) + Lemma \Rightarrow (r1), (r2), (r3)
```
To do: (11) , (12) , (13) , (14) ⇒ Lemma

What's next?

Right now:

 \triangleright Prove (I4) suffices (or find a different solution)

Soon:

 \blacktriangleright More cryptomorphic descriptions (bases, circuits, flats, ...)

What's next?

Dots on the horizon:

- \rightarrow q-analogue of Tutte polynomial
- \blacktriangleright Link with rank weight enumerator
- Rank metric codes that are not \mathbb{F}_{q^m} -linear
- Ink with other q-analogues?
- \triangleright Do all q-matroids come from rank metric codes?

Thank you for your attention.