On *q*-analogs of the Fano plane

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Network Coding and Designs April 4, 2016 Dubrovnik, Hrvatska

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Most frequent image in discrete math.
- Fano plane.

- Smallest projective plane.
- Smallest non-trivial Steiner triple system.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Block designs and their q-analogs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Intersection numbers

Prescribed automorphisms

Subspace codes

Outline

Block designs and their q-analogs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Intersection numbers

Prescribed automorphisms

Subspace codes

Subset lattice

Let V be a v-element set.

•
$$\binom{V}{k} :=$$
 Set of all *k*-subsets of *V*.

$$\blacktriangleright \# \binom{V}{k} = \binom{V}{k}.$$

Subsets of V form a distributive lattice (wrt. \subseteq).

Definition $D \subseteq \binom{V}{k}$ is a *t*-(*v*, *k*, λ) (block) design if

each $T \in \binom{V}{t}$ is contained in exactly λ blocks (elements of *D*).

- If $\lambda = 1$: *D* Steiner system
- If $\lambda = 1$, t = 2 and k = 3: D Steiner triple system STS(v)

Example

Fano plane D is a 2-(7,3,1) design, i.e an STS(7).

Lemma

Let *D* be a t-(v, k, λ) design and $i \in \{0, ..., t\}$. Then *D* is also an i-(v, k, λ_i) design with

$$\lambda_{i} = \frac{\binom{\nu-i}{t-i}}{\binom{k-i}{t-i}} \cdot \lambda.$$

In particular, $\#D = \lambda_0$.

Example

Fano plane STS(7) ($v = 7, k = 3, t = 2, \lambda = 1$):

$$\lambda_2=1,\quad \lambda_1=3,\quad \lambda_0=7$$

Corollary: Integrality conditions If a *t*-(v, k, λ) design exists, then

 $\lambda_0, \lambda_1, \dots, \lambda_t \in \mathbb{Z}$ (Parameters are admissible)

Lemma

STS(v) admissible $\iff v \equiv 1,3 \pmod{6}$.

STS(v) for small v

- STS(3) = $\{V\}$ exists trivially.
- Smallest non-trivial Steiner triple system: Fano plane STS(7).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Next admissible case: STS(9) exists (affine plane of order 3).

Theorem (Kirkman 1847)

All admissible STS(v) do exist.

Subspace lattice

- Let *V* be a *v*-dimensional \mathbb{F}_q vector space.
- Grassmannian $\begin{bmatrix} V \\ k \end{bmatrix}_q :=$ Set of all *k*-dim. subspaces of *V*.
- Gaussian Binomial coefficient

$$\# \begin{bmatrix} V \\ k \end{bmatrix}_q = \begin{bmatrix} v \\ k \end{bmatrix}_q = \frac{(q^{\nu} - 1)(q^{\nu - 1} - 1) \cdot \ldots \cdot (q^{\nu - k + 1} - 1)}{(q - 1)(q^2 - 1) \cdot \ldots \cdot (q^k - 1)}$$

- Subspaces of V form a modular lattice (wrt. \subseteq).
- Subspace lattice of V = projective geometry PG(v 1, q)
 - Elements of $\begin{bmatrix} V \\ 1 \end{bmatrix}_q$ are points.
 - Elements of $\begin{bmatrix} V \\ 2 \end{bmatrix}_a$ are lines.
 - Elements of $\begin{bmatrix} V\\3 \end{bmatrix}_a$ are planes.
 - Elements of $\begin{bmatrix} v^{i} \\ v-1 \end{bmatrix}_{a}$ are hyperplanes.
- ► Fano plane is the projective geometry PG(2,2).

q-analogs in combinatorics

Replace subset lattice by subspace lattice!

orig.	<i>q</i> -analog		
v-element setV	<i>v</i> -dim. \mathbb{F}_q vector space <i>V</i>		
$\binom{V}{k}$	$\begin{bmatrix} V\\k \end{bmatrix}_q$		
$\binom{v}{k}$	$\begin{bmatrix} v\\k \end{bmatrix}_q$		
cardinality	dimension		
\cap	\cap		
U	+		

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The subset lattice corresponds to q = 1.
- Sometimes: Unary field \mathbb{F}_1 .

Definition (block design)

Let *V* be a *v*-element set. $D \subseteq \binom{V}{k}$ is a *t*-(*v*, *k*, λ) (block) design if each $T \in \binom{V}{t}$ is contained in exactly λ elements of *D*.

q-analog of a design?

Definition (subspace design) Let *V* be a *v*-dimensional \mathbb{F}_q vector space. $D \subseteq {V \brack k}_q$ is a *t*-(*v*, *k*, $\lambda)_q$ (subspace) design if each $T \in {V \brack t}_q$ is contained in exactly λ elements of *D*.

- If $\lambda = 1$: *D q*-Steiner system
- ▶ If $\lambda = 1$, t = 2, k = 3: D q-Steiner triple system $STS_q(v)$
- ► Geometrically: STS_q(v) is a set of planes in PG(v − 1, q) covering each line exactly once.

Lemma

Let *D* be a t- $(v, k, \lambda)_q$ design and $i \in \{0, ..., t\}$. Then *D* is also an i- $(v, k, \lambda_i)_q$ design with

$$\lambda_{j} = \frac{{\binom{\nu-i}{t-i}}_{q}}{{\binom{k-i}{t-i}}_{q}} \cdot \lambda.$$

In particular, $\#D = \lambda_0$.

Corollary: Integrality conditions If a *t*-(v, k, λ)_{*q*} design exists, then

 $\lambda_0, \lambda_1, \ldots, \lambda_t \in \mathbb{Z}$ (Parameters are admissible)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Lemma $STS_q(v)$ admissible $\iff v \equiv 1,3 \pmod{6}$.

$STS_q(v)$ for small v

- $STS_q(3) = \{V\}$ exists trivially.
- *q*-analog of the Fano plane STS_q(7).
 Existence open for every field order *q*.

Most important open problem in q-analogs of designs.

(日) (日) (日) (日) (日) (日) (日)

- STS $_q(9)$: existence open for every q.
- Only known non-trivial *q*-STS: STS₂(13) exists (Braun, Etzion, Östergård, Vardy, Wassermann 2013)

Focus on binary q-analog of the Fano plane STS₂(7).

$$\lambda_2 = 1, \quad \lambda_1 = 21, \quad \lambda_0 = 381$$

- STS₂(7) consists of λ₀ = 381 blocks (out of [⁷₃]₂ = 11811 planes).
- Huge search space $\binom{11811}{381}$ has 730 digits).

Need additional properties!

- Through each point P there are λ₁ = 21 blocks. Image in V/P ≅ PG(5,2) is a line spread. Mateva, Topalova 2009: ∃ 131044 types of spreads. Problem still way too big.
- More refined information by intersection numbers (joint work with Mario Pavčević.)

Block designs and their q-analogs

Intersection numbers

Prescribed automorphisms

Subspace codes

Definition

- In the following: D a t-(v, k, λ)_q design,
 S a subspace of V, s = dim(S)
- ► The *i*-th intersection number of *S* in *D* is

$$\alpha_i = \alpha_i(S) = \#\{B \in D \mid \dim(B \cap S) = i\}.$$

The intersection vector of S in D is

$$(\alpha_0(S), \alpha_1(S), \ldots, \alpha_k(S))$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (*q*-analog of Mendelsohn equations 1971) For $i \in \{0, ..., t\}$

$$\sum_{j=i}^{s} \begin{bmatrix} j \\ i \end{bmatrix}_{q} \alpha_{j} = \begin{bmatrix} s \\ i \end{bmatrix}_{q} \lambda_{j}$$

(Linear system of equations for the intersection vector) Proof. Double count

$$X = \left\{ (I, B) \in \begin{bmatrix} V \\ i \end{bmatrix}_q \times D \mid I \leq B \cap S \right\}$$

4 日 > 4 日 > 4 日 > 4 日 > 1 日 > 9 4 0

 [^s_i]_q possibilities for *I*. For each *I*, λ_i blocks *B* with *I* ≤ *B*. ⇒ #X = [^s_i]_qλ_i.
 For fixed block *B*, there are [^{dim(B∩S)}_i]_q suitable *I*.

 $\implies \# X = \sum_{j=i}^{s} \begin{bmatrix} j \\ i \end{bmatrix}_{q} \alpha_{j}.$

Theorem (*q*-analog of Köhler equations 1988) For $i \in \{0, ..., t\}$

$$\alpha_{i} = \begin{bmatrix} s \\ i \end{bmatrix}_{q} \sum_{j=i}^{t} (-1)^{j-i} q^{\binom{j-i}{2}} \begin{bmatrix} s-i \\ j-i \end{bmatrix}_{q} \lambda_{j} + (-1)^{t+1-i} q^{\binom{t+1-i}{2}} \sum_{j=t+1}^{s} \begin{bmatrix} j \\ i \end{bmatrix}_{q} \begin{bmatrix} j-i-1 \\ t-i \end{bmatrix}_{q} \alpha_{j}.$$

(Parameterization of $\alpha_0, \alpha_1, \ldots, \alpha_t$ by $\alpha_{t+1}, \alpha_{t+2}, \ldots, \alpha_k$)

History

- For classical designs by Köhler in 1988, long and complicated induction proof.
- Simpler proof by de Vroedt in 1991.
- Can be simplified further!
 Idea: Apply Gauss reduction to the Mendelsohn equations.
 Works in the *q*-analog situation, too.

Corollary

Intersection vector is uniquely determined for dim(S) $\leq t$ and dim(S) $\geq v - t$.

Example

Köhler equations for $STS_2(7)$ with s = 4.

$$\alpha_0 = 136 - 8\alpha_3$$

 $\alpha_1 = 210 + 14\alpha_3$

 $\alpha_2 = 35 - 7\alpha_3$

 $\alpha_3 \in \{0, 1\}$, since otherwise

- ► *S* contains two blocks *B*₁, *B*₂.
- ▶ By the dimension formula, dim $(B_1 \cap B_2) \ge 2$. Contradiction.
- \implies Two possible intersection vectors:

(136, 210, 35, 0) and (128, 224, 28, 1)

(日) (日) (日) (日) (日) (日) (日)

Example (cont.)

- Distribution of the 4-dim subspaces S to the two intersection numbers? (total: [⁷₄]₂ = 11811 subspaces S)
- Double counting:
 - (136, 210, 35, 0) occurs 6096 times, (128, 224, 28, 1) occurs 5715 times.

(日) (日) (日) (日) (日) (日) (日)

 Similarly, compute the intersection vectors for all possible values of s.

S	intersection vector	frequency
7	(0,0,0,381)	1
6	(0, 0, 336, 45)	127
5	(0, 256, 120, 5)	2667
4	(128, 224, 28, 1)	5715
4	(136, 210, 35, 0)	6096
3	(240, 140, 0, 1)	381
3	(248, 126, 7, 0)	11430
2	(320,60,1,0)	2667
1	(360, 21, 0, 0)	127
0	(381,0,0,0)	1

How do the different S relate to each other?

Theorem (K., Pavčević 2015)

The "intersection structure" of a 2-analog of the Fano plane is

Block designs and their q-analogs

Intersection numbers

Prescribed automorphisms

Subspace codes

Fundamental theorem of projective geometry

For $v \ge 3$, the automorphism group of the subspace lattice of V is $P\Gamma L(v, q)$.

For
$$q = 2$$
, simply $P\Gamma L(v, 2) = GL(v, 2)$.

Idea

- Pick some subgroup G < GL(7, 2).
- ► Focus on *G*-invariant *q*-analogs of the Fano plane.
 → problem gets much smaller.
- If lucky: Find one!
- Otherwise: Systematically narrow down the possible automorphism groups.

Observation

- ► Conjugate subgroups *G* yield isomorphic designs.
- \implies Only the conjugation type of *G* matters.

The order of the automorphism group of a binary q-analog of the Fano is

- ▶ 1 or
- 2 (1 remaining type) or
- 3 (2 remaining types) or
- 4 (1 remaining type)

Progress

(joint work with Sascha Kurz and Alfred Wassermann)

- ► Parallel computing: Order 4 not possible.
- ► Theory and parallel computing: Order 3 not possible.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The order of the automorphism group of a binary q-analog of the Fano is

- ▶ 1 or
- 2 (1 remaining type) or
- 3 (2 remaining types) or
- 4 (1 remaining type)

Progress

(joint work with Sascha Kurz and Alfred Wassermann)

- ► Parallel computing: Order 4 not possible.
- Theory and parallel computing: Order 3 not possible.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The order of the automorphism group of a binary q-analog of the Fano is

- ▶ 1 or
- 2 (1 remaining type) or
- 3 (2 remaining types) or
- 4 (1 remaining type)

Progress

(joint work with Sascha Kurz and Alfred Wassermann)

- Parallel computing: Order 4 not possible.
- Theory and parallel computing: Order 3 not possible.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The order of the automorphism group of a binary q-analog of the Fano is

- ▶ 1 or
- 2 (1 remaining type) or
- 3 (2 remaining types) or
- 4 (1 remaining type)

Progress

(joint work with Sascha Kurz and Alfred Wassermann)

- Parallel computing: Order 4 not possible.
- Theory and parallel computing: Order 3 not possible.

Lemma Elements of order 3 in GL(v, 2) are represented by

$$A_{v,f} := \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} & & & \\ & \ddots & & \\ & & \ddots & & \\ & & & \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} & \\ & & & & I_f \end{pmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

with $f \in \{0, \ldots, v-1\}$, v - f even.

Proof.

Let $A \in GL(v, 2)$ of order 3. $\implies A^3 = I_v$. $\implies m_A \mid X^3 - 1 = (X^2 + X + 1)(X - 1)$. Enumerate the possible rational normal forms.

Example

Types of elements of order 3 in GL(7,2):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ▶ 1 fixed point
- 2 orbits of size 3 falling into:
 - ▶ 1 orbit line
 - 1 orbit triangle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► 1 fixed point
- 2 orbits of size 3 falling into:
 - ▶ 1 orbit line
 - 1 orbit triangle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 1 fixed point
- 2 orbits of size 3 falling into:
 - 1 orbit line
 - 1 orbit triangle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 1 fixed point
- 2 orbits of size 3 falling into:
 - 1 orbit line
 - 1 orbit triangle

Action of $A_{v,f}$ on the point set $\begin{bmatrix} V \\ 1 \end{bmatrix}_q$

Example

V	f	fixed points	orbit triangles	orbit lines
3	1	1	1	1
7	1	1	21	21
7	3	7	35	5
7	5	31	31	1

Fixed planes

- Let $G = \langle A_{v,f} \rangle$
- ▶ Let $E \in \begin{bmatrix} V \\ 3 \end{bmatrix}_q$ be a fixed plane (i.e. $E^G = E$)
- ▶ Then *G*|_{*E*} is well-defined
- ▶ #G|_E ∈ {1,3}
- $\#G|_E = 1 \implies E$ has 7 fixed points (type 7)
- ► $#G|_E = 3 \implies$ E has 1 fixed point, 1 orbit line and 1 orbit triangle (type 1)

A D F A 同 F A E F A E F A Q A

Counting fixed planes

How many fixed planes of type 1 and 7?

Example

V	f	#f.p.	#o.t. = #T1	#o.l.	# T7
3	1	1	1	1	0
7	1	1	21	21	0
7	3	7	35	5	1
7	5	31	31	1	155

Fixed blocks

- Let *D* be a *G*-invariant $STS_2(v)$.
- \$\mathcal{F}_1\$:= set of fixed blocks of \$D\$ of type 1
 \$\mathcal{F}_7\$:= set of fixed blocks of \$D\$ of type 7

Double count $X = \{(L, B) \mid L \text{ orbit line}, B \in \mathcal{F}_1, L < B\}.$ 1. $\#X = \#\mathcal{F}_1 \cdot 1$ 2. • Let *L* be an orbit line. • *D* Steiner system $\implies \exists$ unique $B \in D$ with L < B. • For all $g \in G: B^g > L^g = L$. • Uniqueness of $B \implies B$ is fixed block. • *B* contains orbit line $L \implies B$ of type 1. So: $\#X = \#(\text{orbit lines}) \cdot 1$.

$$\implies \#\mathcal{F}_1 = \#\text{orbit lines} = \frac{2^{r-r} - 1}{3}$$

Similarly: $\#\mathcal{F}_7 = \frac{(2^f - 1)(2^{f-1} - 1)}{21}$

Example								
	V	f	#f.p.	$\#$ o.l. = $\#\mathcal{F}_1$	#o.t. = #T1	#T7	$\#\mathcal{F}_7$	
	7	1	1	21	21	0	0	
	7	3	7	5	35	1	1	
	7	5	31	1	31	155	155/7	

• $\#\mathcal{F}_7$ must be integral

 \implies The group $\langle A_{7,5} \rangle$ is not possible!

- For f = 3, the T7-plane is contained in *D*.
- For f = 1, all 21 T1-planes are contained in D.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example									
	V	f	#f.p.	$\#$ o.l. = $\#\mathcal{F}_1$	#o.t. = #T1	#T7	$\#\mathcal{F}_7$		
	7	1	1	21	21	0	0		
	7	3	7	5	35	1	1		
	7	5	31	1	31	155	155/7		

• $\#\mathcal{F}_7$ must be integral

 \implies The group $\langle A_{7,5} \rangle$ is not possible!

- For f = 3, the T7-plane is contained in *D*.
- For f = 1, all 21 T1-planes are contained in D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example									
	V	f	#f.p.	$\#$ o.l. = $\#\mathcal{F}_1$	#o.t. = #T1	# T7	$\#\mathcal{F}_7$		
	7	1	1	21	21	0	0		
	7	3	7	5	35	1	1		
	7	5	31	1	31	155	155/7		

• $\#\mathcal{F}_7$ must be integral

 \implies The group $\langle A_{7,5} \rangle$ is not possible!

For f = 3, the T7-plane is contained in *D*.

For f = 1, all 21 T1-planes are contained in D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example								
	V	f	#f.p.	$\#$ 0.l. = $\#\mathcal{F}_1$	#o.t. = #T1	# T7	$\#\mathcal{F}_7$	
	7	1	1	21	21	0	0	
	7	3	7	5	35	1	1	
	7	5	31	1	31	155	155/7	

• $\#\mathcal{F}_7$ must be integral

 \implies The group $\langle A_{7,5} \rangle$ is not possible!

- For f = 3, the T7-plane is contained in *D*.
- For f = 1, all 21 T1-planes are contained in D.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\blacktriangleright \#\mathcal{F}_7 = \mathbf{1}$$

*λ*₁ = 21

Orbit lengths 1 or 3 ⇒ at least 2 fixed blocks!

In total: At least 14 fixed blocks.

$$\blacktriangleright \#\mathcal{F}_7 = \mathbf{1}$$

*λ*₁ = 21

Orbit lengths 1 or 3 ⇒ at least 2 fixed blocks!

In total: At least 14 fixed blocks.

$$\blacktriangleright \#\mathcal{F}_7 = \mathbf{1}$$

∧ λ₁ = 21

Orbit lengths 1 or 3 ⇒ at least 2 fixed blocks!

In total: At least 14 fixed blocks.

- ► $\#\mathcal{F}_7 = 1$
- λ₁ = 21
- Orbit lengths 1 or 3 ⇒ at least 2 fixed blocks!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- In total: At least 14 fixed blocks.
- But $\#\mathcal{F}_1 = 5$. Contradiction!

- $\blacktriangleright \#\mathcal{F}_7 = \mathbf{1}$
- λ₁ = 21
- Orbit lengths 1 or 3 ⇒ at least 2 fixed blocks!
- In total: At least 14 fixed blocks.

- ▶ $\#\mathcal{F}_7 = 1$
- λ₁ = 21
- Orbit lengths 1 or 3 ⇒ at least 2 fixed blocks!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- In total: At least 14 fixed blocks.
- But $\#\mathcal{F}_1 = 5$. Contradiction!

- We didn't find a theoretic argument to exclude $G = \langle A_{7,1} \rangle$.
- We know: D contains the set S of 21 T1-blocks. They all pass through P = ⟨(0,0,0,0,0,0,1⟩).
 In V/P ≅ PG(5,2), they form a Desarguesian line spread.
- Problem: Out of 3720 orbits of length 3, select 120 such that together with S, they form an STS₂(7). Huge search space!
- ► Normalizer N(G) of order 362880 acts on the search space.
- Orderly generation (wrt N(G)) to reduce the number of cases.
- Parallel computation on the Bayreuth Linux cluster.
- Finally: There is no G-invariant STS₂(7).

Theorem (K., Kurz, Wassermann)

The automorphism group of a binary q-analog of the Fano plane is

- trivial or
- of order 2 and conjugate to

$$\left\langle \begin{pmatrix} 0 & 1 & & & \\ 1 & 0 & & & \\ & 0 & 1 & & \\ & 1 & 0 & & \\ & & 0 & 1 & \\ & & & 1 & 0 & \\ & & & & & 1 \end{pmatrix} \right\rangle.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Implications on the existence of a $STS_2(7)$

- Won't be very symmetric.
- Many "natural" approaches for the construction won't work.
- Still: Vast part of the search space remains untouched.
- Further theoretical insight is needed to reduce the complexity to a computationally feasible level.

(日) (日) (日) (日) (日) (日) (日)

Problem is still wide open!

Outline

Block designs and their q-analogs

Intersection numbers

Prescribed automorphisms

Subspace codes

Definition (Steiner system) $D \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$ is a *t*-(*v*, *k*, 1)_{*q*} Steiner system if each $T \in \begin{bmatrix} V \\ t \end{bmatrix}_q$ is contained in exactly one element of *D*.

Definition ((constant dimension) subspace code) $C \subseteq {V \brack k}_q$ is a $(v, 2(k - t + 1); k)_q$ subspace code if each $T \in {V \brack t}_q$ is contained in at most one element of *C*.

• q-Fano setting: $(7, 4; 3)_q$ subspace code C.

- $\#C = 381 \iff C$ is a STS₂(7)
- Find maximum size $A_q(7,4;3)$ of $(7,4;3)_q$ subspace code!

History

- Silberstein 2008: A₂(7,4;3) ≥ 289 Based on lifted rank metric codes.
- ► Vardy 2008: A₂(7, 4; 3) ≥ 294
- ► Kohnert, Kurz 2008: A₂(7,4;3) ≥ 304 Prescribe group of order 21
- ► Braun, Reichelt 2012: A₂(7,4;3) ≥ 329 Prescribe group of order 15, modify large solutions.
- Liu, Honold 2014; Honold, K. 2015: explicit construction of #C = 329 expurgation and augmentation of the lifted Gabidulin code

Also: $A_3(7, 4; 3) \ge 6977$ for q = 3(STS₃(7) would have size 7651.)

Recent approach

joint work with Daniel Heinlein, Sascha Kurz and Alfred Wassermann.

- Systematically check G < GL(7,2) for admitting large G-invariant codes.
- Found #G = 64 admitting #C = 319.
- ... having a subgroup of order 32 admitting #C = 327.
- ... having a subgroup of order 16 admitting #C = 329.
- ... having a subgroup of order 4 admitting

$$\#C = 333.$$

Code provided at subspacecodes.uni-bayreuth.de

Thank you!