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Zero-Error Communication

Zero-error code is a code with the probability of error equal to
zero (under optimal decoding)

⇐⇒ No two codewords can produce the same output

Zero-error capacity of a channel, denoted C0, is the largest
rate achievable with zero-error codes

If M(n) is the size of the largest zero-error code of length n for
a given channel, then

C0 = lim sup
n→∞

1

n
logM(n)

C. E. Shannon, “The Zero Error Capacity of a Noisy Channel,”

IRE Trans. Inf. Theory 2 (3), 1956.
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Zero-Error Communication

Example: The BEC

0

1

0

1

E

1-p

1-p

p

p

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

1

2 3

4

0

Observation: No matter which codeword is sent, the sequence
EE · · ·E can be received with positive probability

Every two codewords are confusable =⇒ the zero-error
capacity of the BEC is equal to zero
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Zero-Error Communication

Another Example:
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Now, since the symbols 0 and 2 for example are not
confusable, we can use only them and communicate error-free

We can transmit one bit per channel use in this way
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Zero-Error Communication

We can do better by looking at sequences of length two:

00, 12, 24, 31, and 43 are non-confusable

The rate of this code is 1
2 log 5 = log

√
5

It turns out that this is the maximal possible rate, i.e., the
zero-error capacity of this channel

L. Lovasz, “On the Shannon Capacity of a Graph,”

IEEE Trans. Inf. Theory 25 (1), 1979. (IT paper award)
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The Shift Channel

Units of transmission: packets

The basic model:

1) Time is slotted, meaning that the packets are sent and
received in integer time instants;

2) At most 1 packet is sent in each time slot;

3) Every packet is delayed in the channel for a number of slots
chosen randomly from the set {0, 1, . . . ,K};

4) The packets are indistinguishable, and hence the information is
conveyed via timing only.
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The Shift Channel: Comments

This model is equivalent to a discrete-time queue with
bounded residence times

V. Anantharam and S. Verdu, “Bits Through Queues,”

IEEE Trans. Inf. Theory 42 (1), 1996. (IT paper award)

If the duration of transmission is n slots, the transmitted
sequence of packets can be identified with a binary sequence
from {0, 1}n
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Optimal zero-error codes

Observation: The Shift Channel does not affect the Hamming
weight of the transmitted codeword

It is enough to consider the constant-weight case

Sequences of length n and weight W can be represented as
W -tuples of integers (p1, . . . , pW ), where pi is the position of
the i ’th 1 in the sequence

10010←→ (1, 4)

Example: n = 9, W = 2, K = 1
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Optimal zero-error codes: Geometric approach
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Optimal zero-error codes: Constant-weight case

Optimal code of length n and weight W is given by

C(n,W ) =
{
x ∈ ∆W

n−W : x = 0 (mod K + 1)
}

The size of the optimal constant-weight code is therefore

M(n,W ) =

(
W +

⌊
n−W
K+1

⌋
W

)

M(n) =
∑n

W=0 M(n,W )
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Zero-error capacity

Since the constructed codes are optimal, the zero-error
capacity is equal to

C0 = lim
n→∞

1

n
logM(n)

Theorem

The zero-error capacity of the Shift Channel with parameter K
is equal to log r , where r is the unique positive real root of the
polynomial xK+1 − xK − 1.
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Zero-error capacity

Proof:

M(n) can also be described recursively

M(n) = M(n − 1) + M(n − K − 1)

with M(n) = n + 1 for n ≤ K

This implies that

M(n) =
K∑

k=0

ak r
n
k

where rk are the roots of the polynomial xK+1 − xK − 1, and
ak are complex constants

Therefore, M(n) ∼ arn, where r is the largest of these roots
(which is the unique positive real root)



Zero-error capacity: Constant-weight case

The constant-weight zero-error capacity—

the largest rate
attainable asymptotically with the requirement that the
fraction of the slots used for transmitting packets equals ω:

C0(ω) = lim
n→∞

1

n
logM(n, ωn) =

ωK + 1

K + 1
H
(
ω(K + 1)

ωK + 1

)

The zero-error capacity can be achieved with constant-weight
codes, so

C0 = max
ω∈[0,1]

C0(ω) =
ω∗K + 1

K + 1
H
(
ω∗(K + 1)

ω∗K + 1

)
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Zero-error capacity: Constant-weight case

More precise asymptotics:

1

n
logM(n, ω∗n) = C0 −

1

2n
log n +O

(
1

n

)
.

Note: Even though the capacity can be achieved with
constant-weight codes, their performance is worse at
finite blocklengths

This is quantified by the second-order term − 1
2n log n
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Generalizations

P types of packets; the delay of each packet is at most K , as
before, and the packets cannot be reordered (queue with a
FIFO service procedure)

Now the packets themselves also carry information

Main observation: We can first design the “timing” code
(P = 1), and then assign to every such codeword of weight W
all possible sequences of packets (PW of them)

P = 2: 10010 −→ A00A0,A00B0,B00A0,B00B0

This construction is optimal

Zero-error capacity is equal to log r , where r is the unique
positive real root of the polynomial xK+1 − PxK − 1
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Zero-error-detecting codes

Zero-error-detecting code is a code which can detect all errors
(in our case shifts) allowed in the model

No codeword can produce another codeword at the output

Zero-error-detection capacity of a channel is the largest rate
achievable (asymptotically) with zero-error-detecting codes
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Zero-error-detecting codes: Construction

The shifts are now assumed to be ∈ {−K1, . . . , 0, . . . ,K2}

Suppose also w.l.o.g. that K1 ≤ K2

Code construction:

D(a)(n,W ) =

{
x ∈ ∆W

n−W : x = 0 (mod K1 + 1),

W∑
i=1

xi = a (mod WK2 + 1)

}
.

This code is a subcode of C(n,W ) obtained as its intersection

with the hyperplanes
∑W

i=1 xi = a (mod WK2 + 1)

Example: n = 9, W = 2, K1 = 0, K2 = 2
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Zero-error-detecting codes: Construction (K1 = 0,K2 = 2)
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Zero-error-detecting codes: Construction

Claim: The code D(a)(n,W ) is zero-error-detecting

Proof:

Let y be the received sequence

If
∑W

i=1 yi 6= a (mod WK2 + 1), the receiver detects an error

Suppose then that
∑W

i=1 yi = a (mod WK2 + 1)

This means that the sum of the coordinates has been changed
in the channel by a multiple of WK2 + 1

Since −K1 ≤ yi − xi ≤ K2 in our model, we have
−WK1 ≤

∑W
i=1(yi − xi ) ≤WK2, so the sum could not have

been changed for a nonzero multiple of WK2 + 1

Therefore, the sum wasn’t changed at all and, if there were
any shifts in channel, some of them must have been shifts to
the right and some of them to the left

Suppose that the i ’th particle was shifted to the left, yi < xi

Then, since xi is a multiple of K1 + 1, and −K1 ≤ yi − xi < 0,
yi cannot be a multiple of K1 + 1, and so y is not a codeword
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Zero-error-detecting codes: Construction

What is the rate of the codes D(a)(n,W )?

Note that

C(n,W ) =

WK2⋃
a=0

D(a)(n,W )

This implies that, for at least one a

∣∣D(a)(n,W )
∣∣ ≥ |C(n,W )|

WK2 + 1

Asymptotically, as n→∞ and W ∼ ωn, the codes D(a)(n,W )
have the same rate as the codes C(n,W ) designed for the
smaller of the two parameters K1, K2
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Zero-error-detection capacity

One cannot do better than this (asymptotically):

Every code detecting shifts from {−K1, . . . , 0, . . . ,K2} is a
code correcting shifts from {−K1, . . . , 0}
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Zero-error-detection capacity

Theorem

The zero-error-detection capacity of the Shift Channel with
parameters K1, K2, is equal to log r , where r is the unique positive
real root of the polynomial xmin{K1,K2}+1 − xmin{K1,K2} − 1.

...which is the same as the zero-error-correction capacity of
the Shift Channel with parameters 0, min{K1,K2}



Zero-error-detection capacity

Theorem

The zero-error-detection capacity of the Shift Channel with
parameters K1, K2, is equal to log r , where r is the unique positive
real root of the polynomial xmin{K1,K2}+1 − xmin{K1,K2} − 1.

...which is the same as the zero-error-correction capacity of
the Shift Channel with parameters 0, min{K1,K2}



Discrete-time queues: Model description

DTQP—Discrete-Time Queue with bounded Processing times

The model:

1) Time is slotted, meaning that the packets are sent and
received in integer time instants;

2) At most 1 packet is sent in each time slot;

3) Every packet is being processed by the server for a number of
slots chosen randomly from the set {0, 1, . . . ,K};

4) The packets are indistinguishable, and hence the information is
conveyed via timing only.
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Discrete-time queues: Comments

The total delay of a packet can now be much larger, because
it has to wait for the other packets that arrived before it to be
processed

The received sequence can be as long as (K + 1)n
(longer than the input for a multiplicative constant!)

We have to incorporate this fact in the definition of the code
rate:

1

Lav(n)
logM(n)

where Lav(n) is the average output length (average over all
codewords and channel statistics)
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Optimal zero-error codes

Optimal solution:

Forbid the sequences whose 1’s are too close to affect each
other (i.e., with less than K zeros in between)

The effect of the channel on the remaining sequences is the
same as in the Shift Channel, so construct an optimal code for
it, as before

The size of the resulting codes is

Mq(n,W ) =

(n+K
K+1

W

)

The capacity:

Cq
0 =

1

K + 1
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Generalizations

P types of packets, no reordering (FIFO service)

Theorem

Zero-error capacity of the DTQP with P types of packets is

Cq
0 = max

{
log(P + 1)

K + 1
,

logP

κ̄+ 1

}
.

Even though we are analyzing the zero-error case, the capacity
depends on the channel statistics through κ̄ =

∑K
k=0 k · p(k)
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