New quasi-symmetric designs by the Kramer-Mesner method \star

Vedran Krčadinac Renata Vlahović

University of Zagreb, Croatia **and** University of Zagreb, Croatia vedran.krcadinac@math.hr renata.vlahovic@math.hr

? Supported in part by the Croatian Science Foundation under project 1637 and by the European Science Foundation under COST Action IC1104.

BrusselsAscona ad Cameraca Te anbul Dubrovn

A t - (v, k, λ) design is a set $V = \{1, \ldots, v\}$ of points together with a family $\mathcal{B} = \{B_1, \ldots, B_b\}$ of *k*-element subsets of *V* called blocks such that any t-subset of points is contained in exactly λ blocks.

 $\frac{2}{12}$

BrusselsAscona BarcelonaBerg nZurichGhentTa lmelaBanzNovi adSalamancaIst anbulDubrovni

A t - (v, k, λ) design is a set $V = \{1, \ldots, v\}$ of points together with a family $\mathcal{B} = \{B_1, \ldots, B_b\}$ of k-element subsets of V called blocks such that any t-subset of points is contained in exactly λ blocks.

The total number of blocks b and the number of blocks r through any given point can be computed from t, v, k and λ .

$$
b = \lambda \cdot \frac{\binom{v}{t}}{\binom{k}{t}}, \qquad r = \lambda \cdot \frac{\binom{v-1}{t-1}}{\binom{k-1}{t-1}}
$$

 \blacktriangleleft \blacktriangleright Back FullScr

A t - (v, k, λ) design is a set $V = \{1, \ldots, v\}$ of points together with a family $\mathcal{B} = \{B_1, \ldots, B_b\}$ of k-element subsets of V called blocks such that any t-subset of points is contained in exactly λ blocks.

The total number of blocks b and the number of blocks r through any given point can be computed from t, v, k and λ .

$$
b = \lambda \cdot \frac{\binom{v}{t}}{\binom{k}{t}}, \qquad r = \lambda \cdot \frac{\binom{v-1}{t-1}}{\binom{k-1}{t-1}}
$$

An automorphism of the design is a permutation $\alpha: V \to V$ taking blocks to blocks, i.e. such that $\alpha(B) \in \mathcal{B}$ for any $B \in \mathcal{B}$.

2/12

anbulDubrovi

Let G be a group of permutations of V and let $\mathcal{T}_1,\ldots,\mathcal{T}_m$ be the orbits of *t*-element subsets of V and $\mathcal{K}_1, \ldots, \mathcal{K}_n$ the orbits of *k*-element subsets of V .

Let G be a group of permutations of V and let T_1, \ldots, T_m be the orbits of *t*-element subsets of V and $\mathcal{K}_1, \ldots, \mathcal{K}_n$ the orbits of *k*-element subsets of V .

Let $a_{ij} = #$ of elements of \mathcal{K}_j containing a given $T \in \mathcal{T}_i$ (does not depend on the choice of T).

BrusselsAscona ad Cameraca Te anbulDubrovn:

Let G be a group of permutations of V and let T_1, \ldots, T_m be the orbits of *t*-element subsets of V and $\mathcal{K}_1, \ldots, \mathcal{K}_n$ the orbits of *k*-element subsets of V .

Let $a_{ij} = #$ of elements of \mathcal{K}_i containing a given $T \in \mathcal{T}_i$ (does not depend on the choice of T).

The matrix $A = [a_{ij}]$ is the Kramer-Mesner matrix. Designs with G as an automorphism group correspond to $0-1$ solutions of the system of linear equations $A \cdot x = \lambda J$, where $J = (1, \ldots, 1)^{\tau}$.

Let G be a group of permutations of V and let T_1, \ldots, T_m be the orbits of *t*-element subsets of V and $\mathcal{K}_1, \ldots, \mathcal{K}_n$ the orbits of *k*-element subsets of V .

Let $a_{ij} = #$ of elements of \mathcal{K}_i containing a given $T \in \mathcal{T}_i$ (does not depend on the choice of T).

The matrix $A = [a_{ij}]$ is the Kramer-Mesner matrix. Designs with G as an automorphism group correspond to $0-1$ solutions of the system of linear equations $A \cdot x = \lambda J$, where $J = (1, \ldots, 1)^{\tau}$.

Solving systems of linear equations over the integers is a NP complete problem. The Kramer-Mesner system is computationally feasible only if the number of variables n is sufficiently small.

It is known that quasi-symmetric designs:

• do not exist for $t > 5$;

It is known that quasi-symmetric designs:

- do not exist for $t > 5$;
- for $t = 4$ the only example is the $4-(23, 7, 1)$ design $(x = 1, y = 3)$ and its complement;

It is known that quasi-symmetric designs:

- do not exist for $t > 5$;
- for $t = 4$ the only example is the $4-(23, 7, 1)$ design $(x = 1, y = 3)$ and its complement;
- for $t = 3$ it is conjectured that the only examples are
	- the quasi-symmetric 4-design and its residual $3-(22, 7, 4)$ design,
	- Hadamard 3-designs,
	- $-3\cdot((\lambda+1)(\lambda^2+5\lambda+5),(\lambda+1)(\lambda+2),\lambda)$ designs (known to exist only for $\lambda = 1$),
	- $-$ a hypothetical 3- $(496, 40, 3)$ design,
	- complements of these designs.

For $t = 2$ the classification of feasible parameters of quasi-symmetric designs is widely open. There are many parameter sets for which existence is unknown.

> \blacktriangleleft \blacktriangleright Back FullScr

5/12

BrusselsAscona BarcelonaBerge nZurichGhentTa adSalamancaIst anbulDubrovnil

For $t = 2$ the classification of feasible parameters of quasi-symmetric designs is widely open. There are many parameter sets for which existence is unknown.

M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 578–582.

Existence \boldsymbol{x} \boldsymbol{y} 3 $\mathbf{1}$ $\overline{?}$ 11 8 8 N_o 12 $\mathbf Q$ $\overline{?}$ 9 9 No 6 7 $\overline{2}$ $\mathbf Q$ 13 3 $Yes(1)$ 9 6 3 6 6 3 $Yes(> 44)$ $\overline{7}$ 4 9 $\rm No$ 6 No 3 $\overline{5}$ $\overline{7}$ $\overline{\mathcal{L}}$ 3 6 $\overline{\mathcal{L}}$ $\overline{5}$ \mathcal{L} 3

BrusselsAscona adSalamancaIs anbulDubrovni

5/12

 \blacktriangleleft \blacktriangleright

Back FullScr For $t = 2$ the classification of feasible parameters of quasi-symmetric designs is widely open. There are many parameter sets for which existence is unknown.

M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 578–582.

5/12

 \blacktriangleleft \blacktriangleright

Back FullScr Adaptations of Kramer-Mesner method to quasi-symmetric designs:

 $1.$ An orbit of k -subsets \mathcal{K}_i is good if $|K_1 \cap K_2|$ is either x or y , for any two elements $K_1, K_2 \in \mathcal{K}_i.$ We can limit the search to good orbits and thereby reduce the number of variables n .

> \blacktriangleleft \blacktriangleright Back **FullScr**

6/12

BrusselsAscona linBordeauxP. adSalamancaIs anbulDubrovn:

Adaptations of Kramer-Mesner method to quasi-symmetric designs:

 $1.$ An orbit of k -subsets \mathcal{K}_i is good if $|K_1 \cap K_2|$ is either x or y , for any two elements $K_1, K_2 \in \mathcal{K}_i.$ We can limit the search to good orbits and thereby reduce the number of variables n .

6/12

RrusselsAscon:

anbulDubrovn

 \blacktriangleleft \blacktriangleright

Back FullScr

2. Two orbits \mathcal{K}_i , \mathcal{K}_j are compatible if $|K_1 \cap K_2|$ is either x or y , for any $K_1\in \mathcal{K}_i,~K_2\in \mathcal{K}_j.$ The $n\times n$ matrix $C=[c_{ij}]$ with $c_{ij}=1$ if \mathcal{K}_i and \mathcal{K}_j are compatible, and $c_{ij} = 0$ otherwise, is the compatibility matrix. This information can be used to make the backtracking search for solutions of the Kramer-Mesner system more efficient.

 $\alpha = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),$ $\beta = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).$

7/12

BrusselsAscona **BarcelonaBerg** nZurichGhentT lmelaBanzNovi anbulDubrovni

 $\alpha = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),$ $\beta = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).$

 $V = \{1, \ldots, 28\}$

Number of orbits T_1, \ldots, T_m of 2-element subsets: $m = 47$.

 $\alpha = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),$ $\beta = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).$

 $V = \{1, \ldots, 28\}$

Number of orbits T_1, \ldots, T_m of 2-element subsets: $m = 47$.

Total number of orbits of 12-element subsets: $n = 2.543568$.

 $\alpha = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),$ $\beta = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).$

 $V = \{1, \ldots, 28\}$

Number of orbits T_1, \ldots, T_m of 2-element subsets: $m = 47$.

Total number of orbits of 12-element subsets: $n = 2.543568$.

Number of good orbits $\mathcal{K}_1, \ldots, \mathcal{K}_n$: $n = 1097$.

 $\alpha = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),$ $\beta = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).$

 $V = \{1, \ldots, 28\}$

Number of orbits T_1, \ldots, T_m of 2-element subsets: $m = 47$.

Total number of orbits of 12-element subsets: $n = 2.543568$.

Number of good orbits $\mathcal{K}_1, \ldots, \mathcal{K}_n$: $n = 1097$.

Number of solutions of the 47×1097 Kramer-Mesner system respecting the compatibility matrix: 654 336.

 $\alpha = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),$ $\beta = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).$

 $V = \{1, \ldots, 28\}$

Number of orbits T_1, \ldots, T_m of 2-element subsets: $m = 47$.

Total number of orbits of 12-element subsets: $n = 2.543568$.

Number of good orbits $\mathcal{K}_1, \ldots, \mathcal{K}_n$: $n = 1097$.

Number of solutions of the 47×1097 Kramer-Mesner system respecting the compatibility matrix: 654 336.

Number of non-isomorphic designs: 13 656.

7/12

RrusselsAscon:

anbulDubrovr

 $\alpha = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),$ $\beta = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).$

 $V = \{1, \ldots, 28\}$

Number of orbits T_1, \ldots, T_m of 2-element subsets: $m = 47$.

Total number of orbits of 12-element subsets: $n = 2.543568$.

Number of good orbits $\mathcal{K}_1, \ldots, \mathcal{K}_n$: $n = 1097$.

Number of solutions of the 47×1097 Kramer-Mesner system respecting the compatibility matrix: 654 336.

Number of non-isomorphic designs: 13 656.

We use **GAP** to compute the orbits and set up the Kramer-Mesner system, our own backtracking **solver** written in C, and **nauty2** by B. D. McKay and A. Piperno for isomorphism checking.

BrusselsAscona BarcelonaBerge nZurichGhentTa lmelaBanzNoviS adSalamancaIst anbulDubrovnil

Example: 2-(36, 16, 12), $x = 6$, $y = 8$. Group $G = \langle \alpha, \beta \rangle$ isomorphic to the symmetric group S_4 generated by the permutations

- $\alpha = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)$ $(28, 29, 30)(31, 32, 33),$
- $\beta = (1, 4)(2, 7)(5, 9)(6, 11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)$ (32, 34).

RrusselsAscon: adSalamancaIs anbulDubrovn:

Example: 2-(36, 16, 12), $x = 6$, $y = 8$. Group $G = \langle \alpha, \beta \rangle$ isomorphic to the symmetric group S_4 generated by the permutations

- $\alpha = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)$ $(28, 29, 30)(31, 32, 33),$
- $\beta = (1, 4)(2, 7)(5, 9)(6, 11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)$ (32, 34).

Proposition. Up to isomorphism there are 35572 quasi-symmetric $(36, 16, 12)$ designs with $x = 6$, $y = 8$ and $G = \langle \alpha, \beta \rangle$ as an automorphism group.

8/12

 \blacktriangleleft \blacktriangleright

Back **FullScr**

Example: 2-(36, 16, 12), $x = 6$, $y = 8$. Group $G = \langle \alpha, \beta \rangle$ isomorphic to the symmetric group S_4 generated by the permutations

- $\alpha = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)$ $(28, 29, 30)(31, 32, 33),$
- $\beta = (1, 4)(2, 7)(5, 9)(6, 11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)$ (32, 34).

Proposition. Up to isomorphism there are 35572 quasi-symmetric $(36, 16, 12)$ designs with $x = 6$, $y = 8$ and $G = \langle \alpha, \beta \rangle$ as an automorphism group.

Theorem. There are more than $50\,000$ quasi-symmetric $(28, 12, 11)$ designs and more than $500\,000$ quasi-symmetric $(36, 16, 12)$ designs up to isomorphism.

 \blacktriangleleft \blacktriangleright Back **FullScr**

8/12

alconcome Cc2he anbulDubrovn

Example: 2-(56, 16, 18), $x = 4$, $y = 8$ (unknown). How to choose the group G ?

Example: 2-(56, 16, 18), $x = 4$, $y = 8$ (unknown). How to choose the group G ?

The associated strongly regular graph has parameters $SRG(231, 30, 9, 3)$. Such a graph exists (the *Cameron graph*) and has a group of automorphisms isomorphic to the Mathieu group M_{21} of order 20160.

Example: 2-(56, 16, 18), $x = 4$, $y = 8$ (unknown). How to choose the group G ?

The associated strongly regular graph has parameters $SRG(231, 30, 9, 3)$. Such a graph exists (the *Cameron graph*) and has a group of automorphisms isomorphic to the Mathieu group M_{21} of order 20160.

The group M_{21} also acts on the quasi-symmetric $2-(21, 6, 4)$, $x=0$, $y = 2$ design with $b = 56$ blocks. It has a subgroup G of order 960 isomorphic to $(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$. A₅. We take the permutation representation of degree 56 determined by the action on the blocks of the $(21, 6, 4)$ design: $G = \langle \alpha, \beta \rangle$,

- $\alpha = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18, 19, 20)(21, 22, 23, 24, 25)(26, 27, 28, 29, 30)$ (31, 32, 33, 34, 35)(36, 37, 38, 39, 40)(41, 42, 43, 44, 45)(46, 47, 48, 49, 50)(51, 52, 53, 54, 55),
- $\beta = (1, 6, 8)(2, 21, 26)(3, 32, 34)(4, 11, 5)(7, 15, 22)(9, 16, 13)(10, 29, 17)(12, 33, 30)(14, 19, 31)$ $(18, 23, 35)(24, 28, 36)(25, 37, 39)(27, 38, 40)(42, 51, 49)(43, 52, 45)(44, 46, 47)(48, 54, 53)$ $(50, 56, 55)$.

RrusselsAscon: adSalamancaIst anbulDubrovni

BrusselsAscona nZurichGhentT anbulDubrovni

10/12

 \blacktriangleleft \blacktriangleright Back FullScr

Computational details:

 \bullet total number of orbits of 16-element subsets is $>$ $\binom{56}{16}$ $\frac{(16)}{960} \approx 4.34 \cdot 10^{10}$

Computational details:

- \bullet total number of orbits of 16-element subsets is $>$ $\binom{56}{16}$ $\frac{(16)}{960} \approx 4.34 \cdot 10^{10}$
- most orbits are of size $960 > 231 = b \ (\# \t{of} \t{blocks} \t{of} \t{the} \t{design})$

Computational details:

- \bullet total number of orbits of 16-element subsets is $>$ $\binom{56}{16}$ $\frac{(16)}{960} \approx 4.34 \cdot 10^{10}$
- most orbits are of size $960 > 231 = b \ (\# \t{of} \t{blocks} \t{of} \t{the} \t{design})$
- there are 1242 "short orbits", of size $\leq b$; we can generate them directly by an algorithm written in GAP

anbulDubrovn

RrusselsAscon:

10/12

 \blacktriangleleft \blacktriangleright

Back FullScr

Computational details:

- \bullet total number of orbits of 16-element subsets is $>$ $\binom{56}{16}$ $\frac{(16)}{960} \approx 4.34 \cdot 10^{10}$
- most orbits are of size $960 > 231 = b \ (\# \t{of} \t{blocks} \t{of} \t{the} \t{design})$
- there are 1242 "short orbits", of size $\leq b$; we can generate them directly by an algorithm written in GAP
- only 40 of the short orbits are good, with intersection numbers $x = 4, y = 8$

Computational details:

- \bullet total number of orbits of 16-element subsets is $>$ $\binom{56}{16}$ $\frac{(16)}{960} \approx 4.34 \cdot 10^{10}$
- most orbits are of size $960 > 231 = b \ (\# \t{of} \t{blocks} \t{of} \t{the} \t{design})$
- there are 1242 "short orbits", of size $\leq b$; we can generate them directly by an algorithm written in GAP
- only 40 of the short orbits are good, with intersection numbers $x = 4, y = 8$
- the 7×40 Kramer-Mesner system has 5 solutions respecting the compatibility matrix, giving rise to the 3 quasi-symmetric designs described in the theorem

 \blacktriangleleft \blacktriangleright Back FullScr

10/12

anbulDubrovn

BrusselsAscona BarcelonaBerge nZurichGhentŤa **llinBordeauxPa** lmelaBanzNoviS adSalamancaIst anbulDubrovnil

The first and the second design span codes of length 56, dimension 23 and minimum distance 8. Best known $[56, 23, d]_2$ code: $d = 14$.

The first and the second design span codes of length 56, dimension 23 and minimum distance 8. Best known $[56, 23, d]_2$ code: $d = 14$.

The third design (with automorphism group $M_{21} \mathbb{Z}_2$) spans a code of length 56, dimension 19 and minimum distance 16. Same parameters as the best known $[56, 19, d]_2$ code!

RrusselsAscons

adSalamancaIs anbulDubrovn:

The first and the second design span codes of length 56, dimension 23 and minimum distance 8. Best known $[56, 23, d]_2$ code: $d = 14$.

The third design (with automorphism group $M_{21} \mathbb{Z}_2$) spans a code of length 56, dimension 19 and minimum distance 16. Same parameters as the best known $[56, 19, d]_2$ code!

Description from M. Grassl's page www.codetables.de based on A. E. Brouwer's tables:

Construction of a linear code [56, 19, 16] over $GF(2)$:

- 1: $[55, 21, 15]$ Cyclic Linear Code over $GF(2)$. CyclicCode of length 55 with generating polynomial $x^{34} + x^{31} + x^{29} + x^{28} + x^{26} + x^{23} + x^{19} + x$ $x^{18} + x^{13} + x^{10} + x^7 + x^5 + x^3 + x + 1.$
- 2: $[56, 21, 16]$ Linear Code over $GF(2)$. ExtendCode $[1]$ by 1.
- 3: $[56, 19, 16]$ Linear Code over $GF(2)$. Subcode of $[2]$.

 \blacktriangleleft \blacktriangleright Back FullScr

11/12

 \mathbf{h}

 \blacktriangleleft I Back FullScr

12/12

BrusselsAscona BarcelonaBerge nZurichGhentTa **llinBordeauxPa** adSalamancaIst anbulDubrovnil

Problem: number of subcodes in step 3 is $\begin{bmatrix} 21\19\end{bmatrix}_2$ $= 733\,006\,703\,275.$

12/12

BrusselsAscona nZurichGhentT lmelaBanzNovi anbulDubrovni

Problem: number of subcodes in step 3 is $\begin{bmatrix} 21\19\end{bmatrix}_2$ $= 733\,006\,703\,275.$

Idea: look at minimum weight words in the $[56, 21, 16]_2$ code from step 2. There are 5170 words of weigt 16; quasi-symmetric designs are equivalent to $b = 231$ words pairwise intersecting in $x = 4$ or $y = 8$ coordinates.

Computational tools: GAP package GUAVA cliquer by P. Östergård and S. Niskanen

12/12

anbulDubrovn

Problem: number of subcodes in step 3 is $\begin{bmatrix} 21\19\end{bmatrix}_2$ $= 733\,006\,703\,275.$

Idea: look at minimum weight words in the $[56, 21, 16]_2$ code from step 2. There are 5170 words of weigt 16; quasi-symmetric designs are equivalent to $b = 231$ words pairwise intersecting in $x = 4$ or $y = 8$ coordinates.

Computational tools: GAP package GUAVA cliquer by P. Östergård and S. Niskanen

Thanks for your attention!

