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Linear Network Coding

• During one shot the transmitter injects a number of packets
into the network, each of which may be regarded as a row
vector over a finite field Fqm .

• These packets propagate through the network. Each node
creates a random -linear combination of the packets it has
available and transmits this random combination.

• Finally, the receiver collects such randomly generated packets
and tries to infer the set of packets injected into the network
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Rank metric codes are used in Network Coding

• Rank metric codes are matrix codes C ⊂ Fm×n
q , armed with

the rank distance

drank(X ,Y ) = rank(X − Y ), where X ,Y ∈ Fn×m
q .

• For linear (n, k) rank metric codes over Fqm with m ≥ n the
following analog of the Singleton bound holds,

drank(C) ≤ n − k + 1.

• The code that achieves this bound is called Maximum Rank
Distance (MRD). Gabidulin codes are a well-known class of
MRD codes.
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THE IDEA: Multi-shot

• Coding can also be performed over multiple uses of the
network, whose internal structure may change at each shot

• Creating dependencies among the transmitted codewords of
different shots can improve the error-correction capabilities
(Nobrega, R., Uchoa-Filho (2010), Wachter-Zeh, A., Stinner,
M., Sidorenko (2015), Mahmood, R., Badr, A., Khisti(2015)).

• One standard way to impose correlation of codewords over
time is by means of convolution codes.

• We propose to use a concatenated code derived by combining
a rank metric code (as inner code) and a convolutional code
(as outer code)

• We show how this scheme add complex dependencies to data
streams in a quite simple way
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Block codes vs convolutional codes

. . . u2, u1, u0

G
−−−−→ . . . v2 = u2G , v1 = u1G , v0 = u0G

represented in a polynomial fashion

· · ·+ u2D2 + u1D + u0

G
−−−−→ · · ·+ u2G︸︷︷︸

v2

D2 + u1G︸︷︷︸
v1

D + u0G︸︷︷︸
v0

substitute G by G (D) = G0 + G1D + · · ·+ GsDs?

...u2D2 + u1D + u0

G(D)

−−→ ...(u2G0 + u1G1 + u0G2)︸ ︷︷ ︸
v2

D2 +(u1G0 + u0G1)︸ ︷︷ ︸
v1

D +u0G0︸︷︷︸
v0

Block codes: C = {uG} = ImFG ∼ {u(D)G} = ImF(D)G
Convolutional codes: C = {u(D)G (D)} = ImF((D))G (D)
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A convolutional code C is a F((D))-subspace of Fn((D)).

A matrix G (D) whose rows form a basis for C is called an encoder.
If C has rank k then we say that C has rate k/n.

C = ImF((D))G (D) =
{

u(D)G (D) : u(D) ∈ Fk((D))
}

Remark
One can also consider the ring of polynomials F[D] instead of
Laurent series F((D)) and define C as a F[D]-module of Fn[D].
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Historical Remarks

• Convolutional codes were introduced by Elias (1955)

• Became widespread in practice with the Viterbi decoding.
Widely implemented codes in (wireless) communications. The
field is typically F2 and the rate and degree are small so that
the Viterbi decoding algorithm is efficient.

• Renewed interest for convolutional codes over large alphabets
trying to fully exploit the potential of convolutional codes.

• Decoding over the erasure channel is easy (Rosenthal et al.
2012).
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MDS convolutional codes over F

The Hamming weight of a polynomial vector

v(D) =
∑
i∈N

viD
i = v0 + v1D + v2D2 + · · ·+ vνDν ∈ F[D]n,

defined as wt(v(D)) =
∑ν

i=0wt(vi ).

The free distance of a convolutional code C is given by,

dfree(C) = min {wt(v(D)) | v(D) ∈ C and v(D) 6= 0}

• For block codes (δ = 0) we know that maximum value is
given by the Singleton bound: n − k + 1

• This bound can be achieve if |F| > n
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Theorem
Rosenthal and Smarandache (1999) showed that the free distance
of convolutional code of rate k/n and degree δ must be upper
bounded by

dfree(C) ≤ (n − k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1. (1)

A code achieving (1) is called Maximum Distance Separable
(MDS).
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Definition
Another important distance measure for a convolutional code is
the jth column distance dc

j (C), (introduced by Costello), given by

d j
H(C) = min

{
wt(v[0,j](D)) | v(D) ∈ C and v0 6= 0

}
where v[0,j](D) = v0 + v1D + . . .+ vjD

j represents the j-th
truncation of the codeword v(D) ∈ C.

The column distances satisfy

d0
H ≤ d1

H ≤ · · · ≤ lim
j→∞

d j
H(C) = dfree(C) ≤ (n − k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.



Rank Metric Codes Convolutional codes A concatenated code Performance

Definition
Another important distance measure for a convolutional code is
the jth column distance dc

j (C), (introduced by Costello), given by

d j
H(C) = min

{
wt(v[0,j](D)) | v(D) ∈ C and v0 6= 0

}
where v[0,j](D) = v0 + v1D + . . .+ vjD

j represents the j-th
truncation of the codeword v(D) ∈ C.

The column distances satisfy

d0
H ≤ d1

H ≤ · · · ≤ lim
j→∞

d j
H(C) = dfree(C) ≤ (n − k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.



Rank Metric Codes Convolutional codes A concatenated code Performance

The j-th column distance is upper bounded as following

d j
H(C) ≤ (n − k)(j + 1) + 1, (2)

If C has the best possible column distance profile then it is called
Maximum Distance Profile (MDP).

The construction of MDP boils down to the construction of
Superregular matrices (difficult over small fields).
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Performance over the erasure channel

Theorem (Rosenthal et al. 2012)

Let C be convolutional code and d j0
H its j = j0 -th column distance.

If in any sliding window of length (j0 + 1)n at most d j0
H − 1 erasures

occur then we can recover completely the transmitted sequence.

Remark
The best scenario happens when the convolutional code is MDP.



Rank Metric Codes Convolutional codes A concatenated code Performance

Performance over the erasure channel

Theorem (Rosenthal et al. 2012)

Let C be convolutional code and d j0
H its j = j0 -th column distance.

If in any sliding window of length (j0 + 1)n at most d j0
H − 1 erasures

occur then we can recover completely the transmitted sequence.

Remark
The best scenario happens when the convolutional code is MDP.



Rank Metric Codes Convolutional codes A concatenated code Performance

Example

· · · vv |
60︷ ︸︸ ︷

? ? · · · ? ?
80︷ ︸︸ ︷

vvv · · · vv

60︷ ︸︸ ︷
? ? · ? ? vv |vv · · ·

A [202, 101] MDS block code can correct 101 erasures in a window
of 202 symbols (recovering rate 101

202): ⇒ cannot correct this
window.
A (2, 1, 50) MDP convolutional code has also 50% error capability.
(L + 1)n = 101× 2 = 202. Take a window of 120 symbols, correct
and continue until you correct the whole window.
We have flexibility in choosing the size and position of the sliding
window.
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The proposed concatenation scheme

• CO an (K , k , δ) convolutional code over the field Fqmn

• (Hamming) distance dfree(CO), column distance d j
H(CO)

• minimal basic encoder GO(D)

• CI a rank metric code with (rank) distance drank(CI ) and
encoder GI

u(D) = u0 + u1D + u2D2 + · · · ∈ Fqmn [D]k the information vector.

· · ·+ u2D2 + u1D + u0

GO(D)

−−−−→ · · ·+ v2D2 + v1D + v0

We divide
vi = (v0

i , v
1
i , . . . , v

K−1
i )
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We identify v j
i ∈ Fqmn with a vector V j

i ∈ Fn
qm (for a given basis of

Fn
qm) and write

Vi = (V 0
i ,V

1
i , . . . ,V

K−1
i )

and therefore

V (D) = V0 + V1D + V2D2 + · · · ∈ Fn
qm [D]K .

Finally, the codewords X (D) of C are obtained through the matrix
GI ∈ Fn×N

qm in the following way:

X j
i = V j

i GI ,

Xi = (X 0
i ,X

1
i , . . . ,X

K−1
i )

and

X (D) = X0 + X1D + X2D2 + ... ∈ C ⊂ Fm×n
q [D]N .
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Distance notions

Definition

The sum rank distance of C is defined as

dSR(C) = min
06=X (D)∈C

rank (X (D)) := min
06=X (D)∈C

∑
i≥0

rank (Xi )

where

rank (Xi ) :=
K−1∑
j=0

rank (X j
i ).

And the column sum rank distance of C is defined as

d j
SR(C) = min

X (D)∈C and X 0
0 6=0

j∑
i=0

rank (Xi ),



Rank Metric Codes Convolutional codes A concatenated code Performance

We assume throughout the paper that m > N.

Theorem

The Sum Rank distance of the concatenated code C is

dSR(C) = dfree(CO)× drank(CI ).

Theorem

The Column Sum Rank distance of C is

d j
SR(C) = d j

H(CO)× drank(CI ).

where d j
H(CO) is the column distance of C.
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Performance

• The rank metric code (inner code) takes care of the errors and
erasures (deletion and injection of packets) during the
transmission.

• The convolutional code (outer code) deals only of the
erasures.

Theorem

If in any sliding window of C of length (j0 + 1) at most d j0
SR − 1

packet losses occur, then we can completely recover the
information sequence.
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Previous Theorem has some drawbacks:

• Only necessary conditions. There are erasure patterns that do
not satisfy the condition of the Theorem but still can be
recovered.

• One has to wait for the whole sequence to arrive. One would
rather decode sequentially.

Theorem

Let d0
H(Co), d1

H(Co), . . . , dL
H(Co) be the distance profile of Co . Let

Li be the number of packet losses at time instant i . Assume that
we have been able to correctly decode up to an instant t − 1.
Then, we can completely decode up to an instant T , t ≤ T iff

s∑
i=0

LT−i+t ≤ d s
H(Co)dRank(CI )− 1 for s = 0, 1, . . . ,T .
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H(Co) be the distance profile of Co . Let

Li be the number of packet losses at time instant i . Assume that
we have been able to correctly decode up to an instant t − 1.
Then, we can completely decode up to an instant T , t ≤ T iff

s∑
i=0

LT−i+t ≤ d s
H(Co)dRank(CI )− 1 for s = 0, 1, . . . ,T .
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Remains to be investigated

• The last Theorem suggests an algorithm: Exploit the
structure of the equations to solve.

• Simulations: Rate of success in recovering for a given
probability of losing a packet.

• Little is known about how to construct good convolutional
codes:

• MDP or equivalently: Construction of superregular matrices
over small fields.

• Constructions tailor-made to deal with burst of erasures (in
both Hamming and Rank metric)
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