Polynomial Approach to Construct Cyclic Subspace Codes

Kamil Otal

Middle East Technical University, Ankara

(Joint work with Ferruh Özbudak)

Network Coding and Designs April 4-8, 2016 Dubrovnik

Outline

Introduction

- Subspace codes
- Cyclic subspace codes
- Subspace polynomials

2 Motivation

- Related work
- Our goal

Our contributions

- A generalization: More codewords
- Further improvement: More diverse parameters
- About the distance 2k-2s
- Adjoint codes

Subspace codes Cyclic subspace codes Subspace polynomials

Subspace codes

Consider the following notations and definitions.

- q: a prime power,
- **F***q*: the finite field of size *q*,
- *N*, *k*: positive integers such that 1 < *k* < *N*,
- $\mathcal{P}_q(N)$: the set of all subspaces of \mathbb{F}_q^N ,
- $\mathcal{G}_q(N, k)$: the set of k-dimensional subspaces in $\mathcal{P}_q(N)$,
- Subspace distance:

$$d(U, V) \coloneqq \dim U + \dim V - 2\dim(U \cap V)$$

for all $U, V \in \mathcal{P}_q(N)$.

Subspace codes Cyclic subspace codes Subspace polynomials

Subspace codes

- **Subspace code**: A nonempty subset *C* of $\mathcal{P}_q(N)$ with the subspace distance.
- Constant dimension code: A subspace code C if
 C ⊆ G_q(N, k).
- Distance of a code:

 $d(\mathcal{C}) \coloneqq \min\{d(U, V) : U, V \in \mathcal{C} \text{ and } U \neq V\}.$

ヘロト 人間 ト ヘヨト ヘヨト

Subspace codes Cyclic subspace codes Subspace polynomials

Cyclic subspace codes

- Consider \mathbb{F}_{q^N} instead of \mathbb{F}_q^N equivalently (and richly).
- $\mathbb{F}_{q^N}^*$: the set of nonzero elements of \mathbb{F}_{q^N} .
- Cyclic shift of a codeword U by $\alpha \in \mathbb{F}_{a^N}^*$:

 $\alpha \pmb{U} \coloneqq \{ \alpha \pmb{u} : \pmb{u} \in \pmb{U} \}.$

• Frobenius shift of a codeword U:

$$U^q \coloneqq \{u^q : u \in U\}.$$

• It is easy to show that the cyclic shift and the Frobenius shift are also subspaces of the same dimension.

Subspace codes Cyclic subspace codes Subspace polynomials

Cyclic subspace codes

• **Orbit** of a codeword *U*:

$$Orb(U) \coloneqq \{ \alpha U : \alpha \in \mathbb{F}_{q^N}^* \}.$$

- It is easy to show that orbits form an equivalence relation in G_q(N,k) and so in P_q(N).
- Cyclic (subspace) code: A subspace code C if Orb(U) ⊆ C for all U ∈ C.

Subspace codes Cyclic subspace codes Subspace polynomials

Cyclic subspace codes

The following proposition is well known.

Proposition

Let $U \in \mathcal{G}_q(N, k)$. \mathbb{F}_{q^d} is the largest field such that U is also \mathbb{F}_{q^d} -linear (i.e. linear over \mathbb{F}_{q^d}) if and only if

$$|Orb(U)|=rac{q^N-1}{q^d-1}.$$

くロト (過) (目) (日)

Subspace codes Cyclic subspace codes Subspace polynomials

Cyclic subspace codes

Let *d* denote the largest integer where *U* is also \mathbb{F}_{q^d} -linear.

- Full length orbit: An orbit if *d* = 1.
- Degenerate orbit: An orbit which is not full length.
- Remark that *d* divides both *N* and *k*. More explicitly,

$$U \in \mathcal{G}_q(N,k) \iff U \in \mathcal{G}_{q^d}(N/d,k/d)$$
.

Therefore, it is enough to study on full length orbits.

Subspace codes Cyclic subspace codes Subspace polynomials

Literature

- Subspace codes, particularly constant dimension codes, have been intensely studied in the last decade due to their application in random network coding¹.
- Cyclic subspace codes are useful in this manner due to their efficient encoding and decoding algorithms. Some recent studies about cyclic codes and their efficiency are:
 - -> A. Kohnert and S. Kurz; Construction of large constant dimension codes with a prescribed minimum distance, Lecture Notes Computer Science, vol. 5395, pp. 31–42, 2008.
 - -> T. Etzion and A. Vardy; Error correcting codes in projective space, IEEE Trans. on Inf. Theory, vol. 57, pp. 1165–1173, 2011.

¹R. Kötter and F. R. Kschischang; *Coding for errors and erasures in random network coding*, IEEE Trans. on Inf. Theory, vol. 54, pp. 3579–3591, 2008.

Subspace codes Cyclic subspace codes Subspace polynomials

Literature

- -> A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal; *Cyclic orbit codes*, IEEE Trans. on Inf. Theory, vol. 59, pp. 7386–7404, 2013.
- -> M. Braun, T. Etzion, P. Ostergard, A. Vardy and A. Wasserman; *Existence of q-analogues of Steiner systems*, arXiv:1304.1462, 2013.
- -> H. Gluesing-Luerssen, K. Morrison and C. Troha; Cyclic orbit codes and stabilizer subfields, Adv. in Math. of Communications, vol. 25, pp. 177–197, 2015.
- -> E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv; Subspace polynomials and cyclic subspace codes, IEEE Trans. on Inf. Theory (to appear).

ヘロト 人間 ト ヘヨト ヘヨト

э.

Subspace codes Cyclic subspace codes Subspace polynomials

Subspace Polynomials

• Linearized polynomial (q-polynomial):

$$F(x) = \alpha_s x^{q^s} + \alpha_{s-1} x^{q^{s-1}} + \dots + \alpha_0 x \in \mathbb{F}_{q^N}[x]$$

for some nonnegative integer s.

- The roots of *F* form a subspace of an extension of \mathbb{F}_{q^N} .
- The multiplicity of each root of *F* is the same, and equal to *q^r* for some nonnegative integer *r* ≤ *s*. Explicitly, *r* is the smallest integer satisfying α_r is nonzero.

ヘロト 人間 ト ヘヨト ヘヨト

Subspace codes Cyclic subspace codes Subspace polynomials

Subspace Polynomials

- **Subspace polynomial**: A monic linearized polynomial such that
 - splits completely over \mathbb{F}_{q^N} (i.e. all roots are in \mathbb{F}_{q^N}),
 - has no multiple roots (i.e. $\alpha_0 \neq 0$).
- More explicitly, it is the polynomial

$$\prod_{u\in U}(x-u)$$

where *U* is a subspace of \mathbb{F}_{q^N} .

Related work Our goal

Related work

Theorem^a

^aE. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv; *Subspace polynomials and cyclic subspace codes*, IEEE Trans. on Inf. Theory (to appear).

Let

- *n* be a prime,
- γ be a primitive element of \mathbb{F}_{q^n} ,
- \mathbb{F}_{q^N} be the splitting field of the polynomial

$$\boldsymbol{x}^{\boldsymbol{q}^{k}} + \gamma^{\boldsymbol{q}} \boldsymbol{x}^{\boldsymbol{q}} + \gamma \boldsymbol{x},$$

• $U \in \mathcal{G}_q(N, k)$ is this polynomial's kernel.

ヘロト ヘワト ヘビト ヘビト

э

Related work Our goal

Related work

Theorem (cont'd.)

Then

$$\mathcal{C} \coloneqq \bigcup_{i=0}^{n-1} \{ \alpha U^{q^i} : \alpha \in \mathbb{F}_{q^N}^* \}$$

is a cyclic code of size $n\frac{q^{N-1}}{q^{-1}}$ and minimum distance 2k - 2.

ヘロト 人間 とくほとくほとう

Related work Our goal

Our goal

Our goal is to generalize their result in two directions:

- Larger codes? That is, insert more orbits?
- More diverse *N* values? Via other types of subspace polynomials?

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

æ

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

A generalization: More codewords

Result 1

Let *n* and *r* be positive integers such that $r \le q^n - 1$ and let

- $\gamma_1, ..., \gamma_r$ be distinct elements of $\mathbb{F}_{q^n}^*$,
- $T_i(x) \coloneqq x^{q^k} + \gamma_i^q x^q + \gamma_i x$ for all $i \in \{1, ..., r\}$,
- N_i be the degree of the splitting field of T_i for all $i \in \{1, ..., r\}$,
- $U_i \subseteq \mathbb{F}_{q^{N_i}}$ be the kernel of T_i for all $i \in \{1, ..., r\}$,
- *N* be a multiple of $lcm(N_1, ..., N_r)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

A generalization: More codewords

Result 1 (cont'd.)

Then the code $C \subseteq G_q(N, k)$ given by

$$\mathcal{C} = \bigcup_{i=1}^r \{ \alpha U_i : \alpha \in \mathbb{F}_{q^N}^* \}$$

is a cyclic code of size $r\frac{q^{N-1}}{q-1}$ and the minimum distance 2k - 2. Moreover,

$$(\exists m) \gamma_i = \gamma_j^{q^m} \Rightarrow U_i = U_j^{q^m} (\text{ and so } N_i = N_j).$$

ヘロト 人間 とくほとくほとう

э.

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

A generalization: More codewords

Main Idea of the Proof

It is enough to show that

 $\dim(\alpha U_i \cap \beta U_j) \leq 1$

when $i \neq j$ or $\frac{\alpha}{\beta} \notin \mathbb{F}_q$. To show it, solve the system

$$T_i(x) = 0, T_j(\frac{\alpha}{\beta}x) = 0$$

ヘロト 人間 とくほとくほとう

= 990

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

A generalization: More codewords

Corollary 1

In Result 1, taking

$$\gamma_1 = \gamma, \gamma_2 = \gamma^q, ..., \gamma_n = \gamma^{q^{n-1}} \in \mathbb{F}_{q^n}$$

for some positive integer *n* and irreducible element $\gamma \in \mathbb{F}_{q^n}$, we obtain a code C with

$$\#(\mathcal{C}) = \frac{q^N - 1}{q - 1}$$
 and $d(\mathcal{C}) = 2k - 2$.

C is the same with the one in the theorem of Ben-Sasson et al for given *n* and γ .

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

A generalization: More codewords

Remark

In their theorem, it is assumed that <u>n</u> is prime and $\underline{\gamma}$ is primitive. However, in Corollary 1 they are <u>not needed</u>, only $\overline{\gamma}$'s irreducibleness is assumed. Therefore, Corollary 1 is also an improvement of their theorem.

Example

Let q = 2, n = 4 and k = 3. We can take $\gamma \in \mathbb{F}_{q^n}^*$ such that the minimal polynomial of γ over \mathbb{F}_q is $x^4 + x^3 + x^2 + x + 1$. Here, n = 4 is not a prime and γ is not primitive but we can apply Corollary 1 (or their theorem) and thus obtain a cyclic code $C \subseteq \mathcal{G}_q(12,3)$ of size $4(2^{12} - 1)$ and the minimum distance 4.

ヘロト ヘワト ヘビト ヘビト

э

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

A generalization: More codewords

Remark

In Result 1, we can choose *r* as strictly larger than *n*.

Example

Let q = 3, n = 2 and k = 4. Also let $\omega \in \mathbb{F}_{q^n}^*$ with the minimal polynomial $x^2 + 2x + 2$ over \mathbb{F}_q . Then we construct the cyclic codes $\mathcal{C}_0, \mathcal{C}_1 \subset \mathcal{G}_3(52, 4)$ of distance 6 as follows.

	C_0 (using Theorem)	C_1 (using Result 1)
Tools:	ω (and so ω^q)	$\omega, \omega^q, \omega^2, \omega^{2q}, 1$
Size:	$2\frac{3^{52}-1}{2}$	$5\frac{3^{52}-1}{2}$

Size has increased % 150! Also C_1 contains C_0 .

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

Further improvement: More diverse parameters

Question

Consider the set

$$\{\boldsymbol{x}^{\boldsymbol{q}^{k}} + \boldsymbol{\theta}\boldsymbol{x}^{\boldsymbol{q}} + \gamma\boldsymbol{x}: \boldsymbol{\theta}, \gamma \in \mathbb{F}_{\boldsymbol{q}^{n}}^{*}\}$$

for some positive integer *n*. How should we choose polynomials from this set so that the collection of orbits of their kernels forms a cyclic code of distance 2k - 2?

Introduction Motivation Our contributions Adjoint codes

Further improvement: More diverse parameters

Result 2

Consider a set of r polynomials

$$T_i(x) := x^{q^k} + \theta_i x^q + \gamma_i x \in \mathbb{F}_{q^n}[x], 1 \le i \le r$$

satisfying $\theta_i \neq 0$ and $\gamma_i \neq 0$ for all $1 \leq i \leq r$, and

$$\frac{\gamma_i}{\gamma_j} \neq \left(\frac{\gamma_i}{\gamma_j} \left(\frac{\theta_i}{\theta_j}\right)^{-1}\right)^M \text{ when } i \neq j,$$

where $M \coloneqq \frac{q^k - 1}{q - 1} \mod q^n - 1$.

イロト イポト イヨト イヨト

= 990

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

Further improvement: More diverse parameters

Result 2 (cont'd.)

Also let

- N_i be the degree of the splitting field of T_i for all $i \in \{1, ..., r\}$,
- $U_i \subseteq \mathbb{F}_{q^{N_i}}$ be the kernel of T_i for all $i \in \{1, ..., r\}$,
- *N* be a multiple of $lcm(N_1, ..., N_r)$.

Then the code $C \subseteq G_q(N, k)$ given by

$$\mathcal{C} = \bigcup_{i=1}^r \{ \alpha U_i : \alpha \in \mathbb{F}_{q^N}^* \}$$

is a cyclic code of size $r\frac{q^{N-1}}{q-1}$ and the distance 2k - 2.

Introduction Motivation Our contributions About the distance About the distance

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

Further improvement: More diverse parameters

Remark

Result 1 is a special case of Result 2 with $\theta_i = \gamma_i^q$. Notice that the assumption

$$\frac{\gamma_i}{\gamma_j} \neq \left(\frac{\gamma_i}{\gamma_j} (\frac{\theta_i}{\theta_j})^{-1}\right)^M \text{ when } i \neq j$$

has been automatically satisfied due to the fact that $gcd(q^k, q^n - 1) = 1$.

イロト イポト イヨト イヨト

1

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

Further improvement: More diverse parameters

Result 2 give us an opportunity to construct codes of diverse lengths as we can observe in the following example.

Example

Let q = 3, n = 2, k = 4 and $\mathbb{F}_{3^2} = \mathbb{F}_3(\omega)$ where ω is a root of the primitive polynomial $x^2 + 2x + 2 \in \mathbb{F}_3[x]$. If we use Result 1 then we must choose only the polynomials from the list below.

Polynomial	Degree of the splitting field
$X^{q^k} + X^q + X$	26
$X^{q^k} + \omega^q X^q + \omega X$	52
$x^{q^k} + \omega^{2q} x^q + \omega^2 x$	52
$x^{q^k} + \omega^{3q} x^q + \omega^3 x$	80

ヘロト ヘワト ヘビト ヘビト

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

Further improvement: More diverse parameters

Example (cont'd.)

Polynomial	Degree of the splitting field
$x^{q^k} + 2x^q + 2x$	48
$x^{q^k} + \omega^{5q} x^q + \omega^5 x$	52
$x^{q^k} + \omega^{6q} x^q + \omega^6 x$	48
$x^{q^k} + \omega^{7q} x^q + \omega^7 x$	52

If we want N = 26 (or an odd multiple of 26) then we have only one orbit (obtained by $x^{q^k} + x^q + x$), i.e. construct a code of size $\frac{3^{N-1}}{2}$, distance 6 and N an odd multiple of 26. If we want more orbits using Result 1, then N must change and it can not be an odd multiple of 26 any more.

A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s Adjoint codes

Further improvement: More diverse parameters

Example (cont'd.)

However, using Result 2 we have M = 0 and so the only restriction is $\gamma_i \neq \gamma_j$ when $i \neq j$. So we can choose the polynomials below.

Polynomial	Degree of the splitting field
$x^{q^k} + \omega^2 x^q + x$	26
$x^{q^k} + \omega x^q + \omega^2 x$	26
$x^{q^k} + \omega x^q + \omega^6 x$	26

In that way, the length *N* is kept as an odd multiple of 26 and we can construct a code including three orbits, i.e. construct a code of size $3\frac{3^{N}-1}{2}$, distance 6 and length an odd multiple of 26.

Introduction Motivation Our contributions About the distance 2k-2s Adjoint codes

About the distance 2k-2s

An generalization of Result 2 for the distance 2k - 2s (where $1 \le s \le k - 1$) using also degenerate orbits considering the set of polynomials

$$T_i(x) := x^{q^k} + \gamma_{s,i} x^{q^s} + \dots + \gamma_{1,i} x^q + \gamma_{0,i} x \in \mathbb{F}_{q^n}[x], 1 \le i \le r$$

is immediate.

イロト イポト イヨト イヨト

æ

Adjoint codes

- Let $T(x) \in \mathbb{F}_{q^N}[x]$ be a subspace polynomial having the rootspace U. We can determine another subspace $\overline{U} \subseteq \mathbb{F}_{q^N}$ associated with T(x).
- $u \in \overline{U}$ if and only if

$$T(x) = \left(x^q - \frac{1}{u^{q-1}}x\right) \circ Q(x)$$

for some *q*-polynomial Q(x) over \mathbb{F}_{q^N} .

ヘロト ヘアト ヘビト ヘビト

æ

Introduction Motivation Our contributions Adjoint codes Adjoint codes

Adjoint codes

This space can be also characterized by

$$u \in \overline{U} \Leftrightarrow u^q$$
 is a root of $\overline{T}(x) \coloneqq (\alpha_0 x)^{q^k} + ... + (\alpha_{k-1} x)^q + x$

where

$$T(x) = x^{q^k} + \alpha_{k-1} x^{q^{k-1}} + \dots + \alpha_0 x.$$

Here, dim_{𝔽q}(U) = dim_{𝔽q}(U). U is called the *adjoint space* of T (or, of U).

(See Theorems 14, 15 and 16 in the paper of Ore $(1933)^2$ for the proofs of these facts.)

²O. Ore, *"On a special class of polynomials"*, Trans. Amer. Math. Soc., vol. 35 (1933), pp. 559–584.

Introduction Motivation Our contributions Adjoint codes Adjoint codes

Adjoint codes

Result 2'

Consider a set of r polynomials

$$\overline{T_i}(x) := x + \gamma_i^q x^{q^{k-1}} + \theta_i x^{q^k} \in \mathbb{F}_{q^n}[x], 1 \le i \le r$$

satisfying $\theta_i \neq 0$ and $\gamma_i \neq 0$ for all $1 \leq i \leq r$, and

$$\frac{\gamma_i}{\gamma_j} \neq \left(\frac{\gamma_i}{\gamma_j} \left(\frac{\theta_i}{\theta_j}\right)^{-1}\right)^M \text{ when } i \neq j,$$

where $M \coloneqq \frac{q^k - 1}{q - 1} \mod q^n - 1$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Introduction Motivation	A generalization: More codewords Further improvement: More diverse parameters About the distance 2k-2s
Our contributions	Adjoint codes

Adjoint codes

Result 2' (cont'd.)

Also let

- N_i be the degree of the splitting field of $\overline{T_i}$ for all $i \in \{1, ..., r\}$,
- $\overline{U_i} \subseteq \mathbb{F}_{q^{N_i}}$ be the kernel of $\overline{T_i}$ for all $i \in \{1, ..., r\}$,
- *N* be a multiple of $lcm(N_1, ..., N_r)$.

Then the code $C \subseteq G_q(N, k)$ given by

$$\mathcal{C} = \bigcup_{i=1}^r \{ \alpha \overline{U_i} : \alpha \in \mathbb{F}_{q^N}^* \}$$

is a cyclic code of size $r\frac{q^{N-1}}{q-1}$ and the distance 2k - 2.

Thank you!

イロン イロン イヨン イヨン

ъ