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Subspace codes

Consider the following notations and definitions.
qqq: a prime power,
FqFqFq: the finite field of size q,
N,kN,kN,k : positive integers such that 1 < k < N,
Pq(N)Pq(N)Pq(N): the set of all subspaces of FN

q ,
Gq(N,k)Gq(N,k)Gq(N,k): the set of k -dimensional subspaces in Pq(N),
Subspace distance:

d(U,V) ∶= dim U + dim V − 2 dim(U ∩V)

for all U,V ∈ Pq(N).
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Subspace codes

Subspace code: A nonempty subset C of Pq(N) with the
subspace distance.
Constant dimension code: A subspace code C if
C ⊆ Gq(N,k).
Distance of a code:

d(C) ∶= min{d(U,V) ∶ U,V ∈ C and U ≠ V}.
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Cyclic subspace codes

Consider FqN instead of FN
q equivalently (and richly).

F∗qNF∗qNF∗qN : the set of nonzero elements of FqN .

Cyclic shift of a codeword U by α ∈ F∗qN :

αU ∶= {αu ∶ u ∈ U}.

Frobenius shift of a codeword U:

Uq ∶= {uq ∶ u ∈ U}.

It is easy to show that the cyclic shift and the Frobenius
shift are also subspaces of the same dimension.
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Cyclic subspace codes

Orbit of a codeword U:

Orb(U) ∶= {αU ∶ α ∈ F∗qN}.

It is easy to show that orbits form an equivalence relation
in Gq(N,k) and so in Pq(N).
Cyclic (subspace) code: A subspace code C if
Orb(U) ⊆ C for all U ∈ C.
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Cyclic subspace codes

The following proposition is well known.

Proposition
Let U ∈ Gq(N,k). Fqd is the largest field such that U is also
Fqd -linear (i.e. linear over Fqd ) if and only if

∣Orb(U)∣ = qN − 1
qd − 1

.
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Cyclic subspace codes

Let d denote the largest integer where U is also Fqd -linear.
Full length orbit: An orbit if d = 1.
Degenerate orbit: An orbit which is not full length.
Remark that d divides both N and k . More explicitly,

U ∈ Gq(N,k) ⇔ U ∈ Gqd (N/d ,k/d) .

Therefore, it is enough to study on full length orbits.
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Literature

Subspace codes, particularly constant dimension codes,
have been intensely studied in the last decade due to their
application in random network coding1.
Cyclic subspace codes are useful in this manner due to
their efficient encoding and decoding algorithms. Some
recent studies about cyclic codes and their efficiency are:
–> A. Kohnert and S. Kurz; Construction of large constant

dimension codes with a prescribed minimum distance,
Lecture Notes Computer Science, vol. 5395, pp. 31–42,
2008.

–> T. Etzion and A. Vardy; Error correcting codes in projective
space, IEEE Trans. on Inf. Theory, vol. 57, pp. 1165–1173,
2011.

1R. Kötter and F. R. Kschischang; Coding for errors and erasures in
random network coding, IEEE Trans. on Inf. Theory, vol. 54, pp. 3579–3591,
2008.
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Literature

–> A.-L. Trautmann, F. Manganiello, M. Braun and J.
Rosenthal; Cyclic orbit codes, IEEE Trans. on Inf. Theory,
vol. 59, pp. 7386–7404, 2013.

–> M. Braun, T. Etzion, P. Ostergard, A. Vardy and A.
Wasserman; Existence of q-analogues of Steiner systems,
arXiv:1304.1462, 2013.

–> H. Gluesing-Luerssen, K. Morrison and C. Troha; Cyclic
orbit codes and stabilizer subfields, Adv. in Math. of
Communications, vol. 25, pp. 177–197, 2015.

–> E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv;
Subspace polynomials and cyclic subspace codes, IEEE
Trans. on Inf. Theory (to appear).

10 / 34 Kamil Otal Polynomial Approach to Construct Cyclic Subspace Codes



Introduction
Motivation

Our contributions

Subspace codes
Cyclic subspace codes
Subspace polynomials

Subspace Polynomials

Linearized polynomial (q-polynomial):

F(x) = αsxqs + αs−1xqs−1 + ... + α0x ∈ FqN [x]

for some nonnegative integer s.
The roots of F form a subspace of an extension of FqN .
The multiplicity of each root of F is the same, and equal to
qr for some nonnegative integer r ≤ s. Explicitly, r is the
smallest integer satisfying αr is nonzero.
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Subspace Polynomials

Subspace polynomial: A monic linearized polynomial
such that

splits completely over FqN (i.e. all roots are in FqN ),
has no multiple roots (i.e. α0 ≠ 0).

More explicitly, it is the polynomial

∏
u∈U

(x − u)

where U is a subspace of FqN .
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Theorema

aE. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv; Subspace
polynomials and cyclic subspace codes, IEEE Trans. on Inf. Theory (to
appear).

Let
n be a prime,
γ be a primitive element of Fqn ,
FqN be the splitting field of the polynomial

xqk + γqxq + γx ,

U ∈ Gq(N,k) is this polynomial’s kernel.
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Theorem (cont’d.)
Then

C ∶=
n−1
⋃
i=0

{αUqi ∶ α ∈ F∗qN}

is a cyclic code of size n qN
−1

q−1 and minimum distance 2k − 2.
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Our goal

Our goal is to generalize their result in two directions:
Larger codes? That is, insert more orbits?
More diverse N values? Via other types of subspace
polynomials?
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A generalization: More codewords

Result 1
Let n and r be positive integers such that r ≤ qn − 1 and let

- γ1, ..., γr be distinct elements of F∗qn ,

- Ti(x) ∶= xqk + γq
i xq + γix for all i ∈ {1, ..., r},

- Ni be the degree of the splitting field of Ti for all
i ∈ {1, ..., r},

- Ui ⊆ FqNi be the kernel of Ti for all i ∈ {1, ..., r},
- N be a multiple of lcm(N1, ...,Nr).
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A generalization: More codewords

Result 1 (cont’d.)
Then the code C ⊆ Gq(N,k) given by

C =
r
⋃
i=1

{αUi ∶ α ∈ F∗qN}

is a cyclic code of size r qN
−1

q−1 and the minimum distance 2k − 2.
Moreover,

(∃m) γi = γqm

j ⇒ Ui = Uqm

j ( and so Ni = Nj).
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Main Idea of the Proof
It is enough to show that

dim(αUi ∩ βUj) ≤ 1

when i ≠ j or α
β ∉ Fq. To show it, solve the system

Ti(x) = 0,
Tj(αβ x) = 0.
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Corollary 1
In Result 1, taking

γ1 = γ, γ2 = γq, ..., γn = γqn−1 ∈ Fqn

for some positive integer n and irreducible element γ ∈ Fqn , we
obtain a code C with

#(C) = qN − 1
q − 1

and d(C) = 2k − 2.

C is the same with the one in the theorem of Ben-Sasson et al
for given n and γ.

19 / 34 Kamil Otal Polynomial Approach to Construct Cyclic Subspace Codes



Introduction
Motivation

Our contributions

A generalization: More codewords
Further improvement: More diverse parameters
About the distance 2k-2s
Adjoint codes

A generalization: More codewords

Remark
In their theorem, it is assumed that n is prime and γ is primitive.
However, in Corollary 1 they are not needed, only γ’s
irreducibleness is assumed. Therefore, Corollary 1 is also an
improvement of their theorem.

Example
Let q = 2, n = 4 and k = 3. We can take γ ∈ F∗qn such that the
minimal polynomial of γ over Fq is x4 + x3 + x2 + x + 1. Here,
n = 4 is not a prime and γ is not primitive but we can apply
Corollary 1 (or their theorem) and thus obtain a cyclic code
C ⊆ Gq(12,3) of size 4(212 − 1) and the minimum distance 4.
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A generalization: More codewords

Remark
In Result 1, we can choose r as strictly larger than n.

Example
Let q = 3, n = 2 and k = 4. Also let ω ∈ F∗qn with the minimal
polynomial x2 + 2x + 2 over Fq. Then we construct the cyclic
codes C0,C1 ⊂ G3(52,4) of distance 6 as follows.

C0 (using Theorem) C1 (using Result 1)
Tools: ω (and so ωq) ω,ωq, ω2, ω2q,1

Size: 2
352 − 1

2
5

352 − 1
2

Size has increased % 150! Also C1 contains C0.
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Further improvement: More diverse parameters

Question
Consider the set

{xqk + θxq + γx ∶ θ, γ ∈ F∗qn}

for some positive integer n. How should we choose polynomials
from this set so that the collection of orbits of their kernels
forms a cyclic code of distance 2k − 2?
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Result 2
Consider a set of r polynomials

Ti(x) ∶= xqk + θixq + γix ∈ Fqn[x],1 ≤ i ≤ r

satisfying θi ≠ 0 and γi ≠ 0 for all 1 ≤ i ≤ r , and

γi

γj
≠ (γi

γj
(θi

θj
)−1)

M

when i ≠ j ,

where M ∶= qk
−1

q−1 mod qn − 1.
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Result 2 (cont’d.)
Also let

- Ni be the degree of the splitting field of Ti for all
i ∈ {1, ..., r},

- Ui ⊆ FqNi be the kernel of Ti for all i ∈ {1, ..., r},
- N be a multiple of lcm(N1, ...,Nr).

Then the code C ⊆ Gq(N,k) given by

C =
r
⋃
i=1

{αUi ∶ α ∈ F∗qN}

is a cyclic code of size r qN
−1

q−1 and the distance 2k − 2.
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Remark

Result 1 is a special case of Result 2 with θi = γq
i . Notice that

the assumption

γi

γj
≠ (γi

γj
(θi

θj
)−1)

M

when i ≠ j

has been automatically satisfied due to the fact that
gcd(qk ,qn − 1) = 1.

25 / 34 Kamil Otal Polynomial Approach to Construct Cyclic Subspace Codes



Introduction
Motivation

Our contributions

A generalization: More codewords
Further improvement: More diverse parameters
About the distance 2k-2s
Adjoint codes

Further improvement: More diverse parameters

Result 2 give us an opportunity to construct codes of diverse
lengths as we can observe in the following example.

Example
Let q = 3,n = 2, k = 4 and F32 = F3(ω) where ω is a root of the
primitive polynomial x2 + 2x + 2 ∈ F3[x]. If we use Result 1 then
we must choose only the polynomials from the list below.

Polynomial Degree of the splitting field

xqk + xq + x 26
xqk + ωqxq + ωx 52
xqk + ω2qxq + ω2x 52
xqk + ω3qxq + ω3x 80
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Example (cont’d.)

Polynomial Degree of the splitting field

xqk + 2xq + 2x 48
xqk + ω5qxq + ω5x 52
xqk + ω6qxq + ω6x 48
xqk + ω7qxq + ω7x 52

If we want N = 26 (or an odd multiple of 26) then we have only
one orbit (obtained by xqk + xq + x), i.e. construct a code of size
3N
−1

2 , distance 6 and N an odd multiple of 26. If we want more
orbits using Result 1, then N must change and it can not be an
odd multiple of 26 any more.
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Example (cont’d.)
However, using Result 2 we have M = 0 and so the only
restriction is γi ≠ γj when i ≠ j . So we can choose the
polynomials below.

Polynomial Degree of the splitting field

xqk + ω2xq + x 26
xqk + ωxq + ω2x 26
xqk + ωxq + ω6x 26

In that way, the length N is kept as an odd multiple of 26 and
we can construct a code including three orbits, i.e. construct a
code of size 33N

−1
2 , distance 6 and length an odd multiple of 26.
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About the distance 2k-2s

An generalization of Result 2 for the distance 2k − 2s (where
1 ≤ s ≤ k − 1) using also degenerate orbits considering the set
of polynomials

Ti(x) ∶= xqk + γs,ixqs + ... + γ1,ixq + γ0,ix ∈ Fqn[x],1 ≤ i ≤ r

is immediate.
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Adjoint codes

Let T (x) ∈ FqN [x] be a subspace polynomial having the
rootspace U. We can determine another subspace U ⊆ FqN

associated with T (x).
u ∈ U if and only if

T (x) = (xq − 1
uq−1 x) ○Q(x)

for some q-polynomial Q(x) over FqN .
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This space can be also characterized by

u ∈ U ⇔ uq is a root of T (x) ∶= (α0x)qk + ... + (αk−1x)q + x

where
T (x) = xqk + αk−1xqk−1 + ... + α0x .

Here, dimFq(U) = dimFq(U). U is called the adjoint space
of T (or, of U).

(See Theorems 14, 15 and 16 in the paper of Ore (1933)2 for
the proofs of these facts.)

2O. Ore, “On a special class of polynomials", Trans. Amer. Math. Soc., vol.
35 (1933), pp. 559–584.
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Result 2’
Consider a set of r polynomials

Ti(x) ∶= x + γq
i xqk−1 + θixqk ∈ Fqn[x],1 ≤ i ≤ r

satisfying θi ≠ 0 and γi ≠ 0 for all 1 ≤ i ≤ r , and

γi

γj
≠ (γi

γj
(θi

θj
)−1)

M

when i ≠ j ,

where M ∶= qk
−1

q−1 mod qn − 1.
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Result 2’ (cont’d.)
Also let

- Ni be the degree of the splitting field of Ti for all
i ∈ {1, ..., r},

- Ui ⊆ FqNi be the kernel of Ti for all i ∈ {1, ..., r},
- N be a multiple of lcm(N1, ...,Nr).

Then the code C ⊆ Gq(N,k) given by

C =
r
⋃
i=1

{αUi ∶ α ∈ F∗qN}

is a cyclic code of size r qN
−1

q−1 and the distance 2k − 2.
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Finally...

Thank you!
,
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