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Motivation

Let V be an n–dimensional vector space over GF(q), q prime
power,

(S(V ),ds), (Gq(n, k),ds) are metric spaces

S(V ) set of all subspaces of PG(n − 1,q),
Gq(n, k) set of all k–dimensional subspaces of
PG(n − 1,q), Grassmannian,
ds(U,U ′) = dim(U + U ′)− dim(U ∩U ′) subspace distance.

The main problem in subspace coding theory

determination of the maximum size of codes with given
minimum distance,
the classification of the corresponding optimal codes.
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Motivation

Codes in the projective space and codes in the Grassmannian
over a finite field −→ error control in random linear network
coding.

R. Kötter, F. R. Kschischang, Coding for Errors and
Erasures in Random Network Coding, IEEE Trans. Inf.
Theory 54 (2008), 3579-3591.
T. Etzion, Problems on q-analogs in coding theory, preprint
(arXiv:1305.6126).

q-analogs

subspace codes are q-analogs of constant weight codes
subsets −→ subspaces of a vector space over a finite field
orders −→ dimensions of the subspaces.
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Definition

An (n,M,d)q mixed–dimension subspace code is a set C of
subspaces of V , where |C| = M and minimum subspace
distance ds(C) = min{ds(U,U ′) | U,U ′ ∈ C,U 6= U ′} = d .

Aq(n,d) the maximum size of an (n,M,d)q mixed–dimension
subspace code.

d = 3, n = 5
subspaces of PG(4,q)
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Preliminaries

A. Beutelspacher, Partial spreads in finite projective
spaces and partial designs, Math. Z. 145 (1975), 211-229.

q3 + 1
largest partial line spread of PG(4,q)

C optimal (5,3)q subspace code
lines contained in C are pairwise disjoint

C contains at most q3 + 1 lines

Dual argument
planes contained in C are pairwise intersecting in a point

C contains at most q3 + 1 planes
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Preliminaries

if C consists of lines and planes
|C| ≤ 2(q3 + 1).

Properties
C contains at most one point,
C contains at most one solid,

if C contains one point, then C contains at most q3 planes,
if C contains one solid, then C contains at most q3 lines.

Aq(5,3) ≤ 2(q3 + 1)

Francesco Pavese On mixed dimension subspace codes



Preliminaries

if C consists of lines and planes
|C| ≤ 2(q3 + 1).

Properties
C contains at most one point,
C contains at most one solid,

if C contains one point, then C contains at most q3 planes,
if C contains one solid, then C contains at most q3 lines.

Aq(5,3) ≤ 2(q3 + 1)

Francesco Pavese On mixed dimension subspace codes



Preliminaries

if C consists of lines and planes
|C| ≤ 2(q3 + 1).

Properties
C contains at most one point,
C contains at most one solid,

if C contains one point, then C contains at most q3 planes,
if C contains one solid, then C contains at most q3 lines.

Aq(5,3) ≤ 2(q3 + 1)

Francesco Pavese On mixed dimension subspace codes



Preliminaries

if C consists of lines and planes
|C| ≤ 2(q3 + 1).

Properties
C contains at most one point,
C contains at most one solid,

if C contains one point, then C contains at most q3 planes,
if C contains one solid, then C contains at most q3 lines.

Aq(5,3) ≤ 2(q3 + 1)

Francesco Pavese On mixed dimension subspace codes



Preliminaries

if C consists of lines and planes
|C| ≤ 2(q3 + 1).

Properties
C contains at most one point,
C contains at most one solid,

if C contains one point, then C contains at most q3 planes,
if C contains one solid, then C contains at most q3 lines.

Aq(5,3) ≤ 2(q3 + 1)

Francesco Pavese On mixed dimension subspace codes



Preliminaries

if C consists of lines and planes
|C| ≤ 2(q3 + 1).

Properties
C contains at most one point,
C contains at most one solid,

if C contains one point, then C contains at most q3 planes,
if C contains one solid, then C contains at most q3 lines.

Aq(5,3) ≤ 2(q3 + 1)

Francesco Pavese On mixed dimension subspace codes



Preliminaries

if C consists of lines and planes
|C| ≤ 2(q3 + 1).

Properties
C contains at most one point,
C contains at most one solid,

if C contains one point, then C contains at most q3 planes,
if C contains one solid, then C contains at most q3 lines.

Aq(5,3) ≤ 2(q3 + 1)

Francesco Pavese On mixed dimension subspace codes



Preliminaries

I) C consists of one point, q3 + 1 lines and q3 planes;
II) C consists of q3 lines, q3 + 1 planes and one solid;
III) C consists of one point, q3 lines, q3 planes and one solid;
IV) C consists of q3 + 1 lines and q3 + 1 planes.
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The odd characteristic case

q = ph odd prime power

PG(4,q)

` : X3 = X4 = X5 = 0,
π : X4 = X5 = 0,

Σi : X4 = ωi−1X5, 1 ≤ i ≤ q − 1,
Σq : X4 = 0,

Σq+1 : X5 = 0,

` ⊂ π ⊂ Σi
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The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

a,b, c ∈ GF(q)

X 3 + aX 2 + bX + c = 0 is irreducible over GF(q),

Mr ,s,t =


1 0 r r2 − ar + s t
0 1 s 2rs − t s2 + bs − cr
0 0 1 2r 2s
0 0 0 1 0
0 0 0 0 1

,

G = {Mr ,s,t | r , s, t ∈ GF(q)} ≤ PGL(5,q),
p–group of order q3.

Action of G on points of PG(4,q)

- points of `,
- π \ `,
- Σi \ π, 1 ≤ i ≤ q + 1.

Francesco Pavese On mixed dimension subspace codes



The odd characteristic case

Action of G on lines of PG(4,q)
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b) q + 1 orbits of size q, lines of π through a point of `,
c) (q + 1)2 orbits of size q2, lines of Σi \ π through a point of
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The odd characteristic case

σ plane,
σ ∩ π /∈ `, σ /∈ Σi

σG set of q3 planes mutually intersecting in a point

L line–orbit of type e),
no line of L is contained in σ

r line of π distinct from `,
ξ plane passing through the line ` distinct from π,

L ∪ {r} ∪ σG ∪ {ξ}
optimal code of type IV )
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The even characteristic case

q = ph even prime power

` : X1 = X4 = X5 = 0,
π : X4 = X5 = 0,

Σ : X1 = 0,
Σ ∩ π = `

pencil F
- solid Σ,

- cone C: vertex N = (1,0,0,0,0)

base H hyperbolic quadric of Σ

X2X5 + X3X4 = 0
- parabolic quadric Qi , 1 ≤ i ≤ q − 1,

N nucleus of Qi , 1 ≤ i ≤ q − 1.
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The even characteristic case

α ∈ GF(q)

X 2 + X + α = 0 is irreducible over GF(q),

Ma,b,c,d =


1 0 0 0 0
0 ac αad bc αbd
0 ad a(c + d) bd b(c + d)
0 0 0 a−1c αa−1d
0 0 0 a−1d a−1(c + d)

,

G = {Ma,b,c,d | a,b, c,d ∈ GF(q),a 6= 0, c2 + cd + αd2 = 1}

G ' Cq+1 × (Eq × Cq−1) ≤ PGL(5,q)

|G| = q3 − q
G fixes each quadric of F
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The even characteristic case

Σ \ H, C \ (π ∪H), Qi \ H, 1 ≤ i ≤ q − 1

r line meeting each of Σ \ H, C \ (π ∪H), Qi \ H,
1 ≤ i ≤ q − 1 in exactly one point,

rG set of q3 − q lines forming partial spread

there are q2 − q line–orbits of this type

there are q2 − q plane–orbits of size q3 − q consisting of planes
mutually intersecting in one point.
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The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



The even characteristic case

R1 regulus of H containing `, R2 opposite regulus,

P1 be a plane–orbit of size q3 − q
there exists a line–orbit L of size q3 − q
no line of L is contained in a plane of P1

P2 set of q + 1 planes generated by a line of R1 and the
point N

P1 ∪P2 set of q3 + 1 planes mutually intersecting in a point
L ∪R2 set of size q3 + 1 disjoint lines

L ∪R2 ∪ P1 ∪ P2

optimal code of type IV )

Francesco Pavese On mixed dimension subspace codes



A2(5,3) = 18
T. Etzion, A. Vardy, Error-correcting codes in projective
space, IEEE Trans. Inform. Theory 57 (2011), no. 2,
1165-1173.

Aq(5,3) = 2(q3 + 1)

T. Honold, M. Kiermaier, S. Kurz, Constructions and
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