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Locality

• Locally repairable codes (LRC)

– Erasure codes which allow local correction of an erasure 
(using a small number of code symbols)
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Locality

• Locally repairable codes (LRC)

– Erasure codes which allow local correction of an erasure 
(using a small number of code symbols)

• The 𝑖th code symbol 𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑛 of an [𝑛, 𝑘, 𝑑] code 𝐶 is 
said to have locality 𝒓 if 𝑐𝑖 can be recovered by accessing 
at most 𝑟 other code symbols. 

• An [𝑛, 𝑘, 𝑑] code 𝐶 is called 𝒓-LRC if all its symbols have 
locality r. 
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Availability

• Codes with availability

– Erasure codes where one erased symbol can be 
recovered in many different ways by using many
disjoint sets of code symbols
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Availability

• Codes with availability

– Erasure codes where one erased symbol can be 
recovered in many different ways by using many
disjoint sets of code symbols

• The 𝑖th code symbol 𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑛 of an [𝑛, 𝑘, 𝑑] code 𝐶
is said to have locality 𝒓 and availability 𝒕 if 𝑐𝑖 can be 
recovered from 𝑡 disjoint sets of other code symbols, 
(called repair sets), where ∀|repair set|≤ 𝑟.

• An [𝑛, 𝑘, 𝑑] code 𝐶 is called (𝒓, 𝒕)-LRC if all its symbols 
have locality 𝑟 and availability 𝑡. 

• If 𝑡 = 1 then (𝑟, 1)-LRC is an 𝑟-LRC .
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(𝑟, 𝑡)-LRC: generator matrix 

• Let 𝐺 = 𝑔1 𝑔2 … |𝑔𝑛 be a generator matrix of an 
[𝑛, 𝑘, 𝑑] code 𝐶.  The 𝑖th symbol of 𝐶 has locality 𝑟 and 

availability 𝑡 if there exist 𝑡 sets 𝑅1
𝑖 , 𝑅2

𝑖 , … , 𝑅𝑡
𝑖 ⊆ [𝑛]\{𝑖} s.t.

• 𝑅𝑗
𝑖 ∩ 𝑅𝑠

𝑖= ∅, j ≠ 𝑠 ∈ [𝑡]

• |𝑅𝑠
𝑖 | ≤ 𝑟, 𝑠 ∈ [𝑡]

• 𝑔𝑖 ∈ span 𝑔𝑗 𝑗∈𝑅𝑠
𝑖 , 𝑠 ∈ [𝑡]
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Example

• Binary [7,3,4] Simplex code 𝑆3

• 𝐺 =
1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1

1
1
1
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Simplex Codes

• Binary [2𝑚 − 1,𝑚, 2𝑚−1] Simplex code 𝑆𝑚

• Recall: The columns of the generator matrix 𝐺𝑚 of 𝑆𝑚
are all distinct nonzero vectors of 𝔽2

𝑚.

Locality 𝑟 = 2
Availability 𝑡 = 2𝑚−1 − 1
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Bounds

Theorem 1 [GHSY12]. Let an [𝑛, 𝑘, 𝑑] code 𝐶 be an 𝑟-LRC. 
The rate and the minimum distance of 𝐶 satisfy

𝑘

𝑛
≤

𝑟

𝑟 + 1
, 𝑑 ≤ 𝑛 − 𝑘 −

𝑘

𝑟
+ 2
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Theorem 1 [GHSY12]. Let an [𝑛, 𝑘, 𝑑] code 𝐶 be an 𝑟-LRC. 
The rate and the minimum distance of 𝐶 satisfy

𝑘

𝑛
≤

𝑟

𝑟 + 1
, 𝑑 ≤ 𝑛 − 𝑘 −

𝑘

𝑟
+ 2

Theorem 2 [RPDV14, TB14]. Let an [𝑛, 𝑘, 𝑑] code 𝐶 be an 
(𝑟, 𝑡)-LRC. The rate and the minimum distance of 𝐶 satisfy
𝑘

𝑛
≤

1

ς𝑖=1
𝑡 (1 +

1
𝑗𝑟
)
, 𝑑 ≤ 𝑛 − 𝑘 −

𝑡 𝑘 − 1 + 1

𝑡 𝑟 − 1 + 1
+ 2
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Bounds

Theorem 1 [GHSY12]. Let an [𝑛, 𝑘, 𝑑] code 𝐶 be an 𝑟-LRC. 
The rate and the minimum distance of 𝐶 satisfy

𝑘

𝑛
≤

𝑟

𝑟 + 1
, 𝑑 ≤ 𝑛 − 𝑘 −

𝑘

𝑟
+ 2

Theorem 2 [RPDV14, TB14]. Let an [𝑛, 𝑘, 𝑑] code 𝐶 be an 
(𝑟, 𝑡)-LRC. The rate and the minimum distance of 𝐶 satisfy
𝑘

𝑛
≤

1

ς𝑖=1
𝑡 (1 +

1
𝑗𝑟
)
, 𝑑 ≤ 𝑛 − 𝑘 −

𝑡 𝑘 − 1 + 1

𝑡 𝑟 − 1 + 1
+ 2

All the known codes that attain the bounds on the minimum 
distance are defined over large alphabets.
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Alphabet-Dependent Bound

Theorem 3 [CM15]. Let an [𝑛, 𝑘, 𝑑] code 𝐶 be an 𝑟-LRC over 
𝔽𝑞. The dimension of 𝐶 satisfies

𝑘 ≤ min
𝑖∈ℤ+

𝑖𝑟 + 𝑘𝑜𝑝𝑡
𝑞

𝑛 − 𝑖 𝑟 + 1 , 𝑑 ,

where 𝑘𝑜𝑝𝑡
𝑞

𝑛, 𝑑 is the largest possible dimension of a code 

of length 𝑛, for a given alphabet size 𝑞 and a given minimum 
distance 𝑑.
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Theorem 3 [CM15]. Let an [𝑛, 𝑘, 𝑑] code 𝐶 be an 𝑟-LRC over 
𝔽𝑞. The dimension of 𝐶 satisfies

𝑘 ≤ min
𝑖∈ℤ+

𝑖𝑟 + 𝑘𝑜𝑝𝑡
𝑞

𝑛 − 𝑖 𝑟 + 1 , 𝑑 ,

where 𝑘𝑜𝑝𝑡
𝑞

𝑛, 𝑑 is the largest possible dimension of a code 

of length 𝑛, for a given alphabet size 𝑞 and a given minimum 
distance 𝑑.

• Note that the rate of an (𝑟, 𝑡)-LRC is at most the rate of an 
𝑟-LRC with the same parameters 𝑟, 𝑛, 𝑑. 

=>  The bound of Theorem 3 applies for an (𝑟, 𝑡)-LRC.
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• Example: binary Simplex code is CM-optimal.
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Anticode-Based Construction

• Proposed by P. Farell in 1970s to obtain 
optimal codes which attain Griesmer bound

• Based on deleting certain columns from the 
generator matrix of the Simplex code, where 
the deleted columns form an anticode
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Anticodes

• A binary linear [𝑛, 𝑘, 𝛿] anticode 𝒜 is a set of codewords
in 𝔽2

𝑛 with the maximum distance 𝛿.

• Distance of zero between codewords is allowed.

• Let 𝐺𝒜 be a 𝑘 × 𝑛 generator matrix of 𝒜. If rk 𝒜 = 𝛾
then each codeword occurs 2𝑘−𝛾 times in 𝒜.

• Due to linearity, 
𝛿 = max

𝑎∈𝒜
𝑤𝑡(𝑎)
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Anticodes

• A binary linear [𝑛, 𝑘, 𝛿] anticode 𝒜 is a set of codewords
in 𝔽2

𝑛 with the maximum distance 𝛿.

• Distance of zero between codewords is allowed.

• Let 𝐺𝒜 be a 𝑘 × 𝑛 generator matrix of 𝒜. If rk 𝒜 = 𝛾
then each codeword occurs 2𝑘−𝛾 times in 𝒜.

• Due to linearity, 
𝛿 = max

𝑎∈𝒜
𝑤𝑡(𝑎)

Example:

A 3,3,2 anticode 𝒜 generated by 𝐺𝒜 =
1 1 0
1 0 1
0 1 1

is given by 

𝒜 = { 000 , 110 , 101 , 011 , 011 , 101 , 110 , 000 }

12



Anticode-Based Construction

• Let 𝑆𝑚 be a [2𝑚 − 1,𝑚, 2𝑚−1] Simplex code with a 
generator matrix 𝐺𝑚.

• Let 𝒜 be an [𝑛, 𝑘, 𝛿] anticode with a generator matrix 𝐺𝒜.

• Then 𝐺 = 𝐺𝑚 ∖ 𝐺𝒜 , the matrix obtained by deleting  𝑛
columns of 𝐺𝒜 from 𝐺𝑚, is a generator matrix of 

a 2𝑚 − 1 − 𝑛,≤ 𝑚, 2𝑚−1 − 𝛿 code.

13



Anticode-Based Construction

• Let 𝑆𝑚 be a [2𝑚 − 1,𝑚, 2𝑚−1] Simplex code with a 
generator matrix 𝐺𝑚.

• Let 𝒜 be an [𝑛, 𝑘, 𝛿] anticode with a generator matrix 𝐺𝒜.

• Then 𝐺 = 𝐺𝑚 ∖ 𝐺𝒜 , the matrix obtained by deleting  𝑛
columns of 𝐺𝒜 from 𝐺𝑚, is a generator matrix of 

a 2𝑚 − 1 − 𝑛,≤ 𝑚, 2𝑚−1 − 𝛿 code.

Example: 

𝐺4 =

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
0

0
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0

1
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1
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1
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1 1 0
1 0 1
0 1 1
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Anticode-Based Construction

• Let 𝑆𝑚 be a [2𝑚 − 1,𝑚, 2𝑚−1] Simplex code with a 
generator matrix 𝐺𝑚.

• Let 𝒜 be an [𝑛, 𝑘, 𝛿] anticode with a generator matrix 𝐺𝒜.

• Then 𝐺 = 𝐺𝑚 ∖ 𝐺𝒜 , the matrix obtained by deleting  𝑛
columns of 𝐺𝒜 from 𝐺𝑚, is a generator matrix of 

a 2𝑚 − 1 − 𝑛,≤ 𝑚, 2𝑚−1 − 𝛿 code.

Example: 

𝐺4 ∖ 𝐺𝒜 =

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
0

0
1
0
1

0
0
1
1

1
1
1
0

1
1
0
1

1
0
1
1

0
1
1
1

1
1
1
1

, 𝐺𝒜 =
1 1 0
1 0 1
0 1 1

generates a 12,4,6 code (which attains Griesmer bound)
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Our Codes

• Idea: To apply anticode-based construction 
with good anticodes which allow  to achieve

– Small locality

– High availability

– CM-optimality\Griesmer-optimality\both
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Our Codes

• Idea: To apply anticode-based construction 
with good anticodes which allow  to achieve

– Small locality

– High availability

– CM-optimality\Griesmer-optimality\both

• We construct 4 families of such anticodes

• => 4 families of optimal codes with small 
locality and high availability
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AntiCode #1

• Let 𝒜𝑠,2 be an anticode such that all weight-2 

vectors of length 𝑠 form the columns of 𝐺𝒜𝑠,2
. 

Then 𝒜𝑠,2 is an [
𝑠
2

, s, 𝛿] with 𝛿 = 𝑠2/4
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AntiCode #1

• Let 𝒜𝑠,2 be an anticode such that all weight-2 

vectors of length 𝑠 form the columns of 𝐺𝒜𝑠,2
. 

Then 𝒜𝑠,2 is an [
𝑠
2

, s, 𝛿] with 𝛿 = 𝑠2/4

• Proof: 

– length: trivial

– Maximum distance 𝛿 : 

Note that 𝐺𝒜𝑠,2
= incidence matrix of a complete graph 𝐾𝑠. 

Then 𝛿 is equal to the size of the maximum cut between a 
vertex set of size 𝑖 and its complement, for 1 ≤ 𝑖 ≤ 𝑠. 
Such a cut is of size 𝑠2/4 .
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AntiCode #1

• Example:

𝐺𝒜𝑠,2
=

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
0

0
1
0
1

0
0
1
1



1 2

34
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Parameters of Code 𝐶𝐼

• Theorem 4. Let

– 𝐺𝑚: [2
𝑚 − 1,𝑚, 2𝑚−1] Simplex code 𝑆𝑚

– 𝐺𝒜𝑠,2
: [

𝑠
2

, s, 𝑠2/4 ] anticode 𝒜𝑠,2, 𝑠 ≤ 𝑚

Then 𝐺𝐼 = 𝐺𝑚 ∖ 𝐺𝒜𝑠,2
generates an

[2𝑚 −
𝑠
2

− 1,𝑚, 2𝑚−1 − 𝑠2/4 ] (𝑟, 𝑡)-LRC 𝐶𝐼 with 

locality 𝑟 = 2 and availability 𝑡 = 2𝑚−1 −
𝑠
2

− 1.
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Parameters of Code 𝐶𝐼

• Theorem 4. Let

– 𝐺𝑚: [2
𝑚 − 1,𝑚, 2𝑚−1] Simplex code 𝑆𝑚

– 𝐺𝒜𝑠,2
: [

𝑠
2

, s, 𝑠2/4 ] anticode 𝒜𝑠,2, 𝑠 ≤ 𝑚

Then 𝐺𝐼 = 𝐺𝑚 ∖ 𝐺𝒜𝑠,2
generates an

[2𝑚 −
𝑠
2

− 1,𝑚, 2𝑚−1 − 𝑠2/4 ] (𝑟, 𝑡)-LRC 𝐶𝐼 with 

locality 𝑟 = 2 and availability 𝑡 = 2𝑚−1 −
𝑠
2

− 1.

Proof (locality+availability):

Given a column 𝑔 of 𝐺𝐼, there are 𝑡𝑚 = 2𝑚−1 − 1 two-dimensional 
subspaces which contain 𝑔 from which we remove at most 

𝒜𝑠,2 =
𝑠
2

whose columns belong to 𝐺𝒜𝑠,2
.
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Optimality of 𝐶𝐼

• Theorem 4. Let

– 𝐺𝑚: [2
𝑚 − 1,𝑚, 2𝑚−1] Simplex code 𝑆𝑚

– 𝐺𝒜𝑠,2
: [

𝑠
2

, s, 𝑠2/4 ] anticode 𝒜𝑠,2, 𝑠 ≤ 𝑚

Then 𝐺𝐼 = 𝐺𝑚 ∖ 𝐺𝒜𝑠,2
generates an

[2𝑚 −
𝑠
2

− 1,𝑚, 2𝑚−1 − 𝑠2/4 ] (𝑟, 𝑡)-LRC 𝐶𝐼 with 

locality 𝑟 = 2 and availability 𝑡 = 2𝑚−1 −
𝑠
2

− 1.

17

Optimality of 𝐶𝐼:
• For 𝑠 ∈ {3,4,5} is CM-optimal
• For 𝑠 ∈ 3,4 is Griesmer-optimal



Anticode #2

• Let 𝒜𝑠;[2,𝑠−1] be an anticode with the generator matrix 𝐺𝒜:

– The columns of 𝐺𝒜 are all vectors in 𝔽2
𝑠 with weights in  

{2,3,… , 𝑠 − 1}

• 𝒜𝑠;[2,𝑠−1] is a [2𝑠 − 𝑠 − 2, 𝑠, 2𝑠−1 − 2] anticode
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Parameters of Code 𝐶𝐼𝐼

• Let 𝒜𝑠;[2,𝑠−1] be an anticode with the generator matrix 𝐺𝒜:

– The columns of 𝐺𝒜 are all vectors in 𝔽2
𝑠 with weights in  

{2,3,… , 𝑠 − 1}

• 𝒜𝑠;[2,𝑠−1] is a [2𝑠 − 𝑠 − 2, 𝑠, 2𝑠−1 − 2] anticode

• Theorem 5. Let

– 𝐺𝑚: [2
𝑚 − 1,𝑚, 2𝑚−1] Simplex code 𝑆𝑚

– 𝐺𝒜: [2𝑠 − 𝑠 − 2, 𝑠, 2𝑠−1 − 2] anticode 𝒜𝑠;[2,𝑠−1], 𝑠 ≤ 𝑚 − 1

Then 𝐺𝐼𝐼 = 𝐺𝑚 ∖ 𝐺𝒜 generates an 

[2𝑚 − 2𝑠 + 𝑠 + 1,𝑚, 2𝑚−1 − 2𝑠−1 + 2]

(2, 𝑡)-LRC 𝐶𝐼𝐼 with locality 2 and availability 𝑡 = 2𝑚−1 − 2𝑠 + s + 1.

19



Optimality of 𝐶𝐼𝐼

• Let 𝒜𝑠;[2,𝑠−1] be an anticode with the generator matrix 𝐺𝒜:

– The columns of 𝐺𝒜 are all vectors in 𝔽2
𝑠 with weights in  

{2,3,… , 𝑠 − 1}

• 𝒜𝑠;[2,𝑠−1] is a [2𝑠 − 𝑠 − 2, 𝑠, 2𝑠−1 − 2] anticode

• Theorem 5. Let

– 𝐺𝑚: [2
𝑚 − 1,𝑚, 2𝑚−1] Simplex code 𝑆𝑚

– 𝐺𝒜: [2𝑠 − 𝑠 − 2, 𝑠, 2𝑠−1 − 2] anticode 𝒜𝑠;[2,𝑠−1], 𝑠 ≤ 𝑚 − 1

Then 𝐺𝐼𝐼 = 𝐺𝑚 ∖ 𝐺𝒜 generates an 

[2𝑚 − 2𝑠 + 𝑠 + 1,𝑚, 2𝑚−1 − 2𝑠−1 + 2]

(2, 𝑡)-LRC 𝐶𝐼𝐼 with locality 2 and availability 2𝑚−1 − 2𝑠 + s + 1.

Optimality of 𝐶𝐼𝐼:
• For 𝑠 ∈ {3,4,5} is CM-optimal
• For all 𝑠 is Griesmer-optimal
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Anticode #3

• Let 𝒜𝑚−1 be an anticode with the generator matrix 

𝐺𝒜 =

1 000…00
0
⋮
0

𝐺𝑚−1
, 𝐺𝑚−1 is the generator matrix of 𝑆𝑚−1

• 𝒜𝑚−1 is a [2𝑚−1, 𝑚 − 1, 2𝑚−2 + 1] anticode

20



Parameters of Code 𝐶𝐼𝐼𝐼
• Let 𝒜𝑚−1 be an anticode with the generator matrix 

𝐺𝒜 =

1 000…00
0
⋮
0

𝐺𝑚−1
, 𝐺𝑚−1 is the generator matrix of 𝑆𝑚−1

• 𝒜𝑚−1 is a [2𝑚−1, 𝑚 − 1, 2𝑚−2 + 1] anticode

• Theorem 6. 𝐺𝐼𝐼𝐼 = 𝐺𝑚 ∖ 𝐺𝒜 =
111…11
𝐺𝑚−1

generates an 

[2𝑚−1 − 1,𝑚, 2𝑚−2 − 1]

(3, 𝑡)-LRC 𝐶𝐼𝐼𝐼 with locality 3 and availability

𝑡 = ൝
(2𝑚−1−4)/3 for odd 𝑚

(2𝑚−1−5)/3 for even 𝑚
20



Parameters of Code 𝐶𝐼𝐼𝐼
• Let 𝒜𝑚−1 be an anticode with the generator matrix 

𝐺𝒜 =

1 000…00
0
⋮
0

𝐺𝑚−1
, 𝐺𝑚−1 is the generator matrix of 𝑆𝑚−1

• 𝒜𝑚−1 is a [2𝑚−1, 𝑚 − 1, 2𝑚−2 + 1] anticode

• Theorem 6. 𝐺𝐼𝐼𝐼 = 𝐺𝑚 ∖ 𝐺𝒜 =
111…11
𝐺𝑚−1

generates an 

[2𝑚−1 − 1,𝑚, 2𝑚−2 − 1]

(3, 𝑡)-LRC 𝐶𝐼𝐼𝐼 with locality 3 and availability

𝑡 = ൝
(2𝑚−1−4)/3 for odd 𝑚

(2𝑚−1−5)/3 for even 𝑚

Size of a spread 
without one 

element in 𝔽2
𝑚−1

Size of the largest 
partial spread       

in 𝔽2
𝑚−1
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Optimality of 𝐶𝐼𝐼𝐼
• Let 𝒜𝑚−1 be an anticode with the generator matrix 

𝐺𝒜 =

1 000…00
0
⋮
0

𝐺𝑚−1
, 𝐺𝑚−1 is the generator matrix of 𝑆𝑚−1

• 𝒜𝑚−1 is a [2𝑚−1, 𝑚 − 1, 2𝑚−2 + 1] anticode

• Theorem 6. 𝐺𝐼𝐼𝐼 = 𝐺𝑚 ∖ 𝐺𝒜 =
111…11
𝐺𝑚−1

generates an 

[2𝑚−1 − 1,𝑚, 2𝑚−2 − 1]

(3, 𝑡)-LRC 𝐶𝐼𝐼𝐼 with locality 3 and availability

𝑡 = ൝
(2𝑚−1−4)/3 for odd 𝑚

(2𝑚−1−5)/3 for even 𝑚

Optimality of 𝐶𝐼𝐼𝐼:
• For all 𝑠 is CM-optimal
• For all 𝑠 is Griesmer-optimal



Anticode #4

• Let 𝒜𝑠 be an anticode with the generator matrix  𝐺𝒜 = 𝐺𝑠,
the generator matrix of 𝑆𝑠

• 𝒜𝑠 is a [2𝑠 − 1, 𝑠, 2𝑠−1] anticode
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Parameters of Code 𝐶𝐼𝑉
• Let 𝒜𝑠 be an anticode with the generator matrix  𝐺𝒜 = 𝐺𝑠,

the generator matrix of 𝑆𝑠
• 𝒜𝑠 is a [2𝑠 − 1, 𝑠, 2𝑠−1] anticode

• Theorem 7. 𝐺𝐼𝑉 = 𝐺𝑚 ∖ 𝐺𝑠 , 𝑠 ≤ 𝑚 − 1, generates an 

[2𝑚 − 2𝑠, 𝑚, 2𝑚−1 − 2𝑠−1]

(𝑟, 𝑡)-LRC 𝐶𝐼𝑉 with locality 𝑟 and availability 𝑡 given by

𝑟 = ቊ
2 if 2 ≤ 𝑠 ≤ 𝑚 − 2
3 if 𝑠 = 𝑚 − 1

𝑡 = ൞

(2𝑚−1−1)/3 if 𝑠 = 𝑚 − 1 and 𝑚 is odd

(2𝑚−1−5)/3 if 𝑠 = 𝑚 − 1 and 𝑚 is even

2𝑚−1 − 2𝑠 if 2 ≤ 𝑠 ≤ 𝑚 − 2
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Optimality of 𝐶𝐼𝑉
• Let 𝒜𝑠 be an anticode with the generator matrix  𝐺𝒜 = 𝐺𝑠,

the generator matrix of 𝑆𝑠
• 𝒜𝑠 is a [2𝑠 − 1, 𝑠, 2𝑠−1] anticode

• Theorem 7. 𝐺𝐼𝑉 = 𝐺𝑚 ∖ 𝐺𝑠 , 𝑠 ≤ 𝑚 − 1, generates an 

[2𝑚 − 2𝑠, 𝑚, 2𝑚−1 − 2𝑠−1]

(𝑟, 𝑡)-LRC 𝐶𝐼𝑉 with locality 𝑟 and availability 𝑡 given by

𝑟 = ቊ
2 if 2 ≤ 𝑠 ≤ 𝑚 − 2
3 if 𝑠 = 𝑚 − 1

𝑡 = ൞

(2𝑚−1−1)/3 if 𝑠 = 𝑚 − 1 and 𝑚 is odd

(2𝑚−1−5)/3 if 𝑠 = 𝑚 − 1 and 𝑚 is even

2𝑚−1 − 2𝑠 if 2 ≤ 𝑠 ≤ 𝑚 − 2

Optimality of 𝐶𝐼𝑉:
• For all 𝑠 is CM-optimal
• For all 𝑠 is Griesmer-optimal
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Summary

CMGriesmer
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Some Numerical Examples

CM
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Outlook

• Constructions for binary 𝐶𝐼, 𝐶𝐼𝐼, 𝐶𝐼𝐼𝐼, 𝐶𝐼𝑉 can be 
generalized for any field 𝔽𝑞.

– For 𝑞 ≥ 3, locality is always 2
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Outlook

• Constructions for binary 𝐶𝐼, 𝐶𝐼𝐼, 𝐶𝐼𝐼𝐼, 𝐶𝐼𝑉 can be 
generalized for any field 𝔽𝑞.

– For 𝑞 ≥ 3, locality is always 2

• The symbols of codes 𝐶𝐼, 𝐶𝐼𝐼 have 2 (or 3 in some cases) 
different  availabilities. 

– Derive tighter bounds for codes with different 
availabilities 
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Thank you!


