Natalia Silberstein Technion and BGU, Israel Joint work with Alexander Zeh

Network Coding and Designs April 2016 Dubrovnik

Binary Locally Repairable Codes

with High Availability

via Anticodes

Outline

- Codes with Locality and Availability
	- Motivation: Distributed Storage
	- Known Bounds
- AntiCodes and AntiCode-Based Construction
- Our Results:

–Optimal Codes with Locality and Availability

• Summary and Outlook

Locality

- **Locally repairable codes (LRC)**
	- Erasure codes which allow **local** correction of an erasure (using a **small** number of code symbols)

Locality

- **Locally repairable codes (LRC)**
	- Erasure codes which allow **local** correction of an erasure (using a **small** number of code symbols)
- The ith code symbol c_i , $1 \leq i \leq n$ of an $[n, k, d]$ code C is said to have **locality** r if c_i can be recovered by accessing at most r other code symbols.
- An $[n, k, d]$ code C is called **r-LRC** if all its symbols have locality r.

Availability

• **Codes with availability**

– Erasure codes where one erased symbol can be recovered in **many** different ways by using **many** disjoint sets of code symbols

Availability

• **Codes with availability**

- Erasure codes where one erased symbol can be recovered in **many** different ways by using **many** disjoint sets of code symbols
- The ith code symbol c_i , $1 \leq i \leq n$ of an $[n, k, d]$ code C is said to have **locality** r and **availability** t if c_i can be recovered from t disjoint sets of other code symbols, (called repair sets), where \forall | repair set $\leq r$.
- An $[n, k, d]$ code C is called (r, t) -LRC if all its symbols have locality r and availability t .
- If $t = 1$ then $(r, 1)$ -LRC is an r-LRC.

(r,t) -LRC: generator matrix

- Let $G = (g_1 | g_2 | ... | g_n)$ be a generator matrix of an $[n, k, d]$ code C. The ith symbol of C has locality r and availability t if there exist t sets $R_1^i, R_2^i, ..., R_t^i \subseteq [n] \backslash \{i\}$ s.t.
- $R_j^i \cap R_s^i = \emptyset, j \neq s \in [t]$
- $|R_s^i| \leq r, s \in [t]$
- $g_i \in \text{span}\left\{g_j\right\}$ $_{j\in R_{S}^{i}}, S\in\left[t\right]$

$$
\bullet \quad G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}
$$

• Binary [7,3,4] Simplex code S_3

•
$$
G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}
$$

Locality 2

• Binary [7,3,4] Simplex code S_3

• Binary [7,3,4] Simplex code S_3

•
$$
G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}
$$

• Binary [7,3,4] Simplex code S_3

• Binary [7,3,4] Simplex code S_3

3

• Binary [7,3,4] Simplex code S_3

Availability 3

• Binary [7,3,4] Simplex code S_3

• Binary [7,3,4] Simplex code S_3

• Binary [7,3,4] Simplex code S_3

Simplex Codes

• Binary $[2^m - 1, m, 2^{m-1}]$ Simplex code S_m

Locality $r = 2$ Availability $t = 2^{m-1} - 1$

• Recall: The columns of the generator matrix G_m of S_m are all distinct nonzero vectors of \mathbb{F}_2^m .

References (locality)

- P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, "On the locality of codeword symbols," 2012.
- N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, "Optimal linear codes with a local-error-correction property," 2012
- V. Cadambe and A. Mazumdar, "An upper bound on the size of locally recoverable codes," 2013
- N. Silberstein, A. Rawat, O. Koyluoglu, and S. Vishwanath, "Optimal locally repairable codes via rank-metric codes," 2013.
- S. Goparaju and R. Calderbank, "Binary cyclic codes that are locally repairable," 2014
- D. S. Papailiopoulos and A. G. Dimakis, "Locally repairable codes," 2014.
- I. Tamo and A. Barg, "A family of optimal locally recoverable codes," 2014.
- T. Westerback, T. Ernvall, and C. Hollanti, "Almost affine locally repairable codes and matroid theory," 2014

References (availability)

- L. Pamies-Juarez, H. Hollmann, and F. Oggier, "Locally repairable codes with multiple repair alternatives," 2013
- A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, "Locality and Availability in Distributed Storage," 2014.
- I. Tamo and A. Barg, "Bounds on Locally Recoverable Codes with Multiple Recovering Sets," 2014
- A. Wang and Z. Zhang, "Repair Locality With Multiple Erasure Tolerance," 2014.
- A. Wang, Z. Zhang, and M. Liu, "Achieving Arbitrary Locality and Availability in Binary Codes," 2015
- P. Huang, E. Yaakobi, H. Uchikawa, and P. H. Siegel, "Linear Locally Repairable Codes with Availability," 2015.

Bounds

Theorem 1 [GHSY12]. Let an $[n, k, d]$ code C be an r-LRC. The rate and the minimum distance of C satisfy \boldsymbol{k} \overline{n} ≤ \boldsymbol{r} $r + 1$, $d \leq n - k \boldsymbol{k}$ \overline{r} $+2$

Bounds

Theorem 1 [GHSY12]. Let an $[n, k, d]$ code C be an r-LRC. The rate and the minimum distance of C satisfy

$$
\frac{k}{n} \le \frac{r}{r+1}, \qquad d \le n - k - \left\lfloor \frac{k}{r} \right\rfloor + 2
$$

Theorem 2 [RPDV14, TB14]. Let an $[n, k, d]$ code C be an (r, t) -LRC. The rate and the minimum distance of C satisfy \boldsymbol{k} \overline{n} \leq 1 $\prod_{i=1}^{t} (1 +$ 1 $\frac{1}{jr}$, $d \leq n - k$ $t(k - 1) + 1$ $t(r - 1) + 1$ $+2$

Bounds

Theorem 1 [GHSY12]. Let an $[n, k, d]$ code C be an r-LRC. The rate and the minimum distance of C satisfy \boldsymbol{k} \overline{n} ≤ \boldsymbol{r} $r + 1$, $d \leq n - k \boldsymbol{k}$ \overline{r} $+2$ **Theorem 2** [RPDV14, TB14]. Let an $[n, k, d]$ code C be an (r, t) -LRC. The rate and the minimum distance of C satisfy \boldsymbol{k} \overline{n} \leq 1 $\prod_{i=1}^{t} (1 +$ 1 $\frac{1}{jr}$, $d \leq n - k$ $t(k - 1) + 1$ $t(r - 1) + 1$ $+2$

All the known codes that attain the bounds on the minimum distance are defined over **large** alphabets.

Theorem 3 [CM15]. Let an $[n, k, d]$ code C be an r-LRC over \mathbb{F}_a . The dimension of C satisfies

$$
k \le \min_{i \in \mathbb{Z}^+} \{ir + k_{opt}^q (n - i(r + 1), d)\},\
$$

where $k_{opt}^q(n,d)$ is the largest possible dimension of a code of length n , for a given alphabet size q and a given minimum distance d .

Theorem 3 [CM15]. Let an $[n, k, d]$ code C be an r-LRC over \mathbb{F}_q . The dimension of C satisfies

$$
k \le \min_{i \in \mathbb{Z}^+} \{ ir + k_{opt}^q (n - i(r + 1), d) \},\
$$

where $k_{opt}^q(n,d)$ is the largest possible dimension of a code of length n , for a given alphabet size q and a given minimum distance d .

- Note that the rate of an (r, t) -LRC is at most the rate of an r-LRC with the same parameters r, n, d .
	- \Rightarrow The bound of Theorem 3 applies for an (r, t) -LRC.

Theorem 3 [CM15]. Let an $[n, k, d]$ code C be an r-LRC over \mathbb{F}_q . The dimension of C satisfies

$$
k \le \min_{i \in \mathbb{Z}^+} \{ ir + k_{opt}^q (n - i(r + 1), d) \},\
$$

where $k_{opt}^q(n,d)$ is the largest possible dimension of a code of length n , for a given alphabet size q and a given minimum distance d .

- A code which attains this bound will be called *CM-optimal*.
- Example: binary Simplex code is CM-optimal.

Theorem 3 [CM15]. Let an $[n, k, d]$ code C be an r-LRC over \mathbb{F}_q . The dimension of C satisfies $k \le \min_{i \in \mathbb{Z}^+} \{ir + k_{opt}^q(n - i(r + 1), d)\},\$ $i \in \mathbb{Z}^+$ where $k_{opt}^q(n, d)$ is the largest possible " $\frac{q}{\omega_{opt}}(n, d)$ is the largest possible dimension of a code of of length n , for a given a struct \mathbf{R} distance A code which are CM-optimal. Which are consider this bound will be called *CM-optimal*. • Example: binary Simplex code is CM-optimal.

• Proposed by P. Farell in 1970s to obtain optimal codes which attain Griesmer bound

• Based on deleting certain columns from the generator matrix of the Simplex code, where the deleted columns form an anticode

Anticodes

- A binary linear $[n, k, \delta]$ anticode \mathcal{A} is a set of codewords in \mathbb{F}_2^n with the **maximum** distance δ .
- Distance of **zero** between codewords is allowed.
- Let $G_{\mathcal{A}}$ be a $k \times n$ generator matrix of \mathcal{A} . If $rk(\mathcal{A}) = \gamma$ then each codeword occurs $2^{k-\gamma}$ times in $\mathcal{A}.$
- Due to linearity,

 δ = max ∈ $wt(a)$

Anticodes

- A binary linear $[n, k, \delta]$ **anticode** A is a set of codewords in \mathbb{F}_2^n with the **maximum** distance δ .
- Distance of **zero** between codewords is allowed.
- Let $G_{\mathcal{A}}$ be a $k \times n$ generator matrix of \mathcal{A} . If $rk(\mathcal{A}) = \gamma$ then each codeword occurs $2^{k-\gamma}$ times in $\mathcal{A}.$
- Due to linearity,

 δ = max ∈ $wt(a)$

Example:

A $[3,3,2]$ anticode ${\mathcal A}$ generated by $G_{{\mathcal A}\,}$ = 1 1 0 1 0 1 0 1 1 is given by $\mathcal{A} = \{(000), (110), (101), (011), (011), (101), (110), (000)\}\$

- Let S_m be a $[2^m 1, m, 2^{m-1}]$ Simplex code with a generator matrix G_m .
- Let A be an $[n, k, \delta]$ anticode with a generator matrix $G_{\mathcal{A}}$.
- Then $G = G_m \setminus G_A$, the matrix obtained by deleting n columns of $G_{\mathcal{A}}$ from G_m , is a generator matrix of $a [2^m - 1 - n, \le m, 2^{m-1} - \delta]$ code.

- Let S_m be a $[2^m 1, m, 2^{m-1}]$ Simplex code with a generator matrix G_m .
- Let A be an $[n, k, \delta]$ anticode with a generator matrix G_A .
- Then $G = G_m \setminus G_A$, the matrix obtained by deleting n columns of $G_{\mathcal{A}}$ from G_m , is a generator matrix of $a [2^m - 1 - n, \le m, 2^{m-1} - \delta]$ code.

Example:

$$
G_4 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}, G_{\mathcal{A}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}
$$

- Let S_m be a $[2^m 1, m, 2^{m-1}]$ Simplex code with a generator matrix G_m .
- Let A be an $[n, k, \delta]$ anticode with a generator matrix G_A .
- Then $G = G_m \setminus G_A$, the matrix obtained by deleting n columns of $G_{\mathcal{A}}$ from G_m , is a generator matrix of $a [2^m - 1 - n, \le m, 2^{m-1} - \delta]$ code.

Example:

$$
G_4 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}, G_{\mathcal{A}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}
$$

- Let S_m be a $[2^m 1, m, 2^{m-1}]$ Simplex code with a generator matrix G_m .
- Let A be an $[n, k, \delta]$ anticode with a generator matrix G_A .
- Then $G = G_m \setminus G_A$, the matrix obtained by deleting n columns of $G_{\mathcal{A}}$ from G_{m} , is a generator matrix of $a [2^m - 1 - n, \le m, 2^{m-1} - \delta]$ code.

Example:

 $G_4 \setminus G_{\mathcal{A}} =$, $G_{\mathcal{A}}$ = 1 0 0 1 1 1

generates a $[12,4,6]$ code (which attains Griesmer bound)

Our Codes

- **Idea:** To apply anticode-based construction with *good* anticodes which allow to achieve
	- Small locality
	- High availability
	- CM-optimality\Griesmer-optimality\both

Our Codes

- **Idea:** To apply anticode-based construction with *good* anticodes which allow to achieve
	- Small locality
	- High availability
	- CM-optimality\Griesmer-optimality\both
- We construct 4 families of such anticodes
- => 4 families of optimal codes with small locality and high availability

• Let $A_{s,2}$ be an anticode such that all weight-2 vectors of length s form the columns of $G_{\mathcal{A}_{S,2}}.$

Then $\mathcal{A}_{s,2}$ is an [$\overline{\mathcal{S}}$ 2 , s, δ] with $\delta = [s^2/4]$

- Let $A_{s,2}$ be an anticode such that all weight-2 vectors of length s form the columns of $G_{\mathcal{A}_{S,2}}.$ Then $\mathcal{A}_{s,2}$ is an [$\overline{\mathcal{S}}$ 2 , s, δ] with $\delta = [s^2/4]$
- *Proof*:
	- length: trivial
	- Maximum distance δ :

Note that $G_{A_{s,2}}$ = incidence matrix of a complete graph K_s . Then δ is equal to the size of the maximum cut between a vertex set of size *i* and its complement, for $1 \le i \le s$. Such a cut is of size $\lfloor s^2/4 \rfloor$.

Parameters of Code C_I

• **Theorem 4.** Let

 $- \ G_m \colon [2^m - 1, m, 2^{m-1}]$ Simplex code S_m – $G_{\mathcal{A}_{S,2}}: [$ \overline{S} 2 , s, $\lfloor s^2/4 \rfloor$] anticode $\mathcal{A}_{s,2}$, $s\leq m$ Then $G_I = G_m \setminus G_{\mathcal{A}_{S,2}}$ generates an $[2^m \overline{S}$ 2 $-1, m, 2^{m-1} - [s^2/4]$ (r, t) -LRC C_I with locality $r = 2$ and availability $t = 2^{m-1}$ - \overline{S} 2 − 1.

Parameters of Code C_I

• **Theorem 4.** Let

 $- \ G_m \colon [2^m - 1, m, 2^{m-1}]$ Simplex code S_m – $G_{\mathcal{A}_{S,2}}: [$ \overline{S} 2 , s, $\lfloor s^2/4 \rfloor$] anticode $\mathcal{A}_{s,2}$, $s\leq m$ Then $G_I = G_m \setminus G_{\mathcal{A}_{S,2}}$ generates an $[2^m \overline{S}$ 2 $-1, m, 2^{m-1} - [s^2/4]$ (r, t) -LRC C_I with locality $r = 2$ and availability $t = 2^{m-1}$ - \overline{S} 2 − 1.

Proof (locality+availability):

Given a column g of G_I , there are $t_m = 2^{m-1} - 1$ two-dimensional subspaces which contain g from which we remove at most $\mathcal{A}_{s,2}$ = \overline{S} $\binom{1}{2}$ whose columns belong to $G_{\mathcal{A}_{S,2}}$.

Optimality of C_I

• **Theorem 4.** Let

 $- \ G_m \colon [2^m - 1, m, 2^{m-1}]$ Simplex code S_m – $G_{\mathcal{A}_{S,2}}: [$ \overline{S} 2 , s, $\lfloor s^2/4 \rfloor$] anticode $\mathcal{A}_{s,2}$, $s\leq m$ Then $G_I = G_m \setminus G_{\mathcal{A}_{S,2}}$ generates an $[2^m \overline{S}$ 2 $-1, m, 2^{m-1} - [s^2/4]$ (r, t) -LRC C_I with locality $r = 2$ and availability $t = 2^{m-1}$ - \overline{S} 2 − 1.

Optimality of C_I :

- For $s \in \{3,4,5\}$ is CM-optimal
- For $s \in \{3,4\}$ is Griesmer-optimal

Anticode #2

- Let $\mathcal{A}_{s,[2,s-1]}$ be an anticode with the generator matrix $G_{\mathcal{A}}$: $-$ The columns of $G_{\mathcal{A}}$ are all vectors in \mathbb{F}_2^s with weights in $\{2,3,\ldots,s-1\}$
- $\mathcal{A}_{s,[2,s-1]}$ is a $[2^s s 2, s, 2^{s-1} 2]$ anticode

Parameters of Code C_{II}

- Let $\mathcal{A}_{s,[2,s-1]}$ be an anticode with the generator matrix $G_{\mathcal{A}}$: $-$ The columns of $G_{\mathcal{A}}$ are all vectors in \mathbb{F}_2^s with weights in $\{2,3,\ldots,s-1\}$
- $\mathcal{A}_{s,[2,s-1]}$ is a $[2^s s 2, s, 2^{s-1} 2]$ anticode
- **Theorem 5.** Let

 $- \ G_m \colon [2^m - 1, m, 2^{m-1}]$ Simplex code S_m $- G_{\mathcal{A}}$: [2^s − s − 2, s, 2^{s−1} − 2] anticode $\mathcal{A}_{s;(2,s-1]}, s \leq m-1$ Then $G_{II} = G_m \setminus G_{A}$ generates an $[2^m - 2^s + s + 1, m, 2^{m-1} - 2^{s-1} + 2]$ $(2, t)$ -LRC C_{II} with locality 2 and availability $t = 2^{m-1} - 2^s + s + 1$.

Optimality of C_{II}

- Let $\mathcal{A}_{s,[2,s-1]}$ be an anticode with the generator matrix $G_{\mathcal{A}}$: $-$ The columns of $G_{\mathcal{A}}$ are all vectors in \mathbb{F}_2^s with weights in $\{2,3,\ldots,s-1\}$
- $\mathcal{A}_{s,[2,s-1]}$ is a $[2^s s 2, s, 2^{s-1} 2]$ anticode
- **Theorem 5.** Let
	- $\ G_m \colon [2^m 1, m, 2^{m-1}]$ Simplex code S_m
	- $G_{\mathcal{A}}$: [2^s − s − 2, s, 2^{s−1} − 2] anticode $\mathcal{A}_{s;(2,s-1]}, s \leq m-1$

Optimality of C_{II} :

- For $s \in \{3,4,5\}$ is CM-optimal
- For all s is Griesmer-optimal

Anticode #3

• Let \mathcal{A}_{m-1} be an anticode with the generator matrix

 $G_{\mathcal{A}}=$ 1 000 … 00 0 $\ddot{\cdot}$ 0 G_{m-1} , G_{m-1} is the generator matrix of S_{m-1} • \mathcal{A}_{m-1} is a $[2^{m-1}, m-1, 2^{m-2}+1]$ anticode

Parameters of Code C_{III}

- Let \mathcal{A}_{m-1} be an anticode with the generator matrix
- $G_{\mathcal{A}}=$ 1 000 … 00 0 $\ddot{\cdot}$ 0 G_{m-1} , G_{m-1} is the generator matrix of S_{m-1}
- \mathcal{A}_{m-1} is a $[2^{m-1}, m-1, 2^{m-2}+1]$ anticode
- **Theorem 6.** $G_{III} = G_m \setminus G_A =$ 111 … 11 G_{m-1} generates an $[2^{m-1}-1, m, 2^{m-2}-1]$

 $(3,t)$ -LRC C_{III} with locality 3 and availability $t = \{$ $(2^{m-1}-4)/3$ for odd m $(2^{m-1}-5)/3$ for even m

Parameters of Code C_{III}

• Let \mathcal{A}_{m-1} be an anticode with the generator matrix

 $G_{\mathcal{A}}=$ 1 000 … 00 0 $\ddot{\cdot}$ 0 G_{m-1} , G_{m-1} is the generator matrix of S_{m-1} • \mathcal{A}_{m-1} is a $[2^{m-1}, m-1, 2^{m-2}+1]$ anticode • **Theorem 6.** $G_{III} = G_m \setminus G_A =$ 111 … 11 G_{m-1} generates an $\left[2^{m-1}-1,m,2^{m-2}-1\right]$ Size of a spread (3, t)-LRC C_{III} with locality 3 and availability $t = \{$ $(2^{m-1}-4)/3$ for odd m $(2^{m-1}-5)/3$ for even m without one element in \mathbb{F}_2^{m-1} Size of the largest partial spread in \mathbb{F}_2^{m-1} 20

Optimality of C_{III}

- Let \mathcal{A}_{m-1} be an anticode with the generator matrix
- $G_{\mathcal{A}}=$ 1 000 … 00 0 $\ddot{\cdot}$ 0 G_{m-1} , G_{m-1} is the generator matrix of S_{m-1}
- \mathcal{A}_{m-1} is a $[2^{m-1}, m-1, 2^{m-2}+1]$ anticode
- **Theorem 6.** $G_{III} = G_m \setminus G_A =$ 111 … 11 G_{m-1} generates an $[2^{m-1}-1, m, 2^{m-2}-1]$
	- $(3,t)$ -LRC C_{III} Optimality of C_{III} :
		- $\overline{}$ • For all *s* is CM-optimal
		- For all *s* is Griesmer-optimal

Anticode #4

- Let A_s be an anticode with the generator matrix $G_{\mathcal{A}} = G_s$, the generator matrix of S_s
- ${\mathcal A}_s$ is a $[2^s 1, s, 2^{s-1}]$ anticode

Parameters of Code C_{IV}

- Let A_s be an anticode with the generator matrix $G_{\mathcal{A}} = G_s$, the generator matrix of $S_{\rm s}$
- ${\mathcal A}_s$ is a $[2^s 1, s, 2^{s-1}]$ anticode
- **Theorem 7.** $G_{IV} = G_m \setminus G_s$, $s \leq m-1$, generates an $[2^m - 2^s, m, 2^{m-1} - 2^{s-1}]$

 (r, t) -LRC C_{IV} with locality r and availability t given by

$$
r = \begin{cases} 2 & \text{if } 2 \le s \le m-2 \\ 3 & \text{if } s=m-1 \end{cases}
$$
\n
$$
t = \begin{cases} (2^{m-1}-1)/3 & \text{if } s=m-1 \text{ and } m \text{ is odd} \\ (2^{m-1}-5)/3 & \text{if } s=m-1 \text{ and } m \text{ is even} \\ 2^{m-1}-2^s & \text{if } 2 \le s \le m-2 \end{cases}
$$

Optimality of C_{IV}

- Let A_s be an anticode with the generator matrix $G_{\mathcal{A}} = G_s$, the generator matrix of $S_{\rm s}$
- ${\mathcal A}_s$ is a $[2^s 1, s, 2^{s-1}]$ anticode
- **Theorem 7.** $G_{IV} = G_m \setminus G_s$, $s \leq m-1$, generates an $[2^m - 2^s, m, 2^{m-1} - 2^{s-1}]$

 (r, t) -LRC C_{IV} with locality r and availability t given by $r = \{$ 2 if $2 \le s \le m-2$ 3 if $s = m - 1$

> m ² Optimality of C_{IV} :

- $\begin{bmatrix} \text{symmetry} \\ \text{ex} \\ \text{ex} \end{bmatrix}$ = $\begin{bmatrix} \text{symatrix} \\ \text{symatrix} \\ \text{ex} \end{bmatrix}$ • For all *s* is CM-optimal
	- r all s is Crisemar antimal • For all s is Griesmer-optimal

Summary

 $[\mathbf{n},\mathbf{k},\mathbf{d}]$ Ref.

Locality r

Availability t

Some Numerical Examples

Outlook

- Constructions for binary C_I , C_{II} , C_{III} , C_{IV} can be generalized for any field \mathbb{F}_q .
	- For $q \geq 3$, locality is always 2

Outlook

- Constructions for binary C_I , C_{II} , C_{III} , C_{IV} can be generalized for any field \mathbb{F}_q .
	- For $q \geq 3$, locality is always 2
- The symbols of codes C_I , C_{II} have 2 (or 3 in some cases) different availabilities.
	- Derive tighter bounds for codes with different availabilities

Thank you!