The Cameron-Liebler problem for sets

Andrea Švob [\(asvob@math.uniri.hr\)](mailto:asvob@math.uniri.hr) Department of Mathematics, University of Rijeka, Croatia

(Joint work with Maarten De Boeck and Leo Storme)

NETCOD16

April 6, 2016

UNIVERSITY OF RIJ DEPARTMENT OF MATHEMATICS

The outline of the talk

- **1** Introduction
- ² The characterisations result
- ³ The classification result
- P. J. Cameron and R. A. Liebler, Tactical decompositions and orbits of projective groups, Linear Algebra Appl. 46, 91-102, 1982.
- Cameron and Liebler investigated the orbits of the projective groups $PGL(n + 1, q)$.

Definition

A Cameron-Liebler line class $\mathcal L$ with parameter x in PG(3, q) is a set of $\mathsf{x}(q^2+q+1)$ lines in PG $(3,q)$ such that any line $\ell \in \mathcal{L}$ meets precisely $\alpha(q+1)+q^2-1$ lines of ${\cal L}$ in a point and such that any line $\ell \notin {\cal L}$ meets precisely $x(q + 1)$ lines of $\mathcal L$ in a point.

Many equivalent characterisations are known:

A line spread of $PG(3, q)$ is a set of lines that form a partition of the point set of $PG(3, q)$, i.e. each point of $PG(3, q)$ is contained in precisely one line of the line spread.

The lines of a line spread are necessarily pairwise skew.

Now a line set $\mathcal L$ in PG(3, q) is a Cameron-Liebler line class with parameter x if and only if it has x lines in common with every line spread of $PG(3, q)$.

The central problem for Cameron-Liebler line classes in $PG(3, q)$ is to determine for which parameters x a Cameron-Liebler line class exists, and to classify the examples admitting a given parameter x .

 $PG(3, q)$: a complete classification is not finished

 $PG(2k + 1, q)$: recently, Cameron-Liebler k-classes in $PG(2k + 1, q)$ were introduced by M. Rodgers, L. Storme and A. Vansweevelt, and Cameron-Liebler line classes in $PG(n, q)$ were studied by A. L. Gavrilyuk and I. Y. Mogilnykh.

A subset of size k of a set will be called shortly a k -subset.

Definition

A k-uniform partition of a finite set Ω , with $|\Omega| = n$ and $k | n$, is a set of pairwise disjoint k-subsets of Ω such that any element of Ω is contained in precisely one of the k-subsets.

Necessarily, a k-uniform partition of a finite set Ω , with $|\Omega| = n$, contains n $\frac{n}{k}$ different *k*-subsets.

Definition

Let Ω be a finite set with $|\Omega| = n$ and let k be a divisor of n. A **Cameron-Liebler class of k-sets with parameter** x is a set of k-subsets of Ω which has x different k-subsets in common with every k-uniform partition of $Ω$.

The next result is the Erdős-Ko-Rado theorem, a classical result in combinatorics.

Theorem

If S is a family of k-subsets in a set Ω with $|\Omega| = n$ and $n > 2k$, such that the elements of $\mathcal S$ are pairwise not disjoint, then $|\Omega|\leq \binom{n-1}{k-1}$ $_{k-1}^{n-1}$). Moreover, it $n > 2k + 1$, then equality holds if and only if S is the set of all k-subsets through a fixed element of Ω .

Lemma

Let Ω be a finite set with $|\Omega|=n$, and let $\mathcal L$ be a Cameron-Liebler class of k-sets with parameter x in Ω , with k | n.

1 The number of k-uniform partitions of Ω equals $\frac{n!}{(n+1)!}$ $\left(\frac{n}{k}\right)$ $\frac{n}{k}$)! $(k!)^{\frac{n}{k}}$.

- **2** The number of k-sets in $\mathcal L$ equals $\chi \binom{n-1}{k-1}$ $\binom{n-1}{k-1}$.
- **3** The set \overline{L} of k-subsets of Ω not belonging to \mathcal{L} is a Cameron-Liebler class of k-sets with parameter $\frac{n}{k} - x$.

Example

Let Ω be a finite set with $|\Omega| = n$, and assume k | n. We give some examples of Cameron-Liebler classes of k -sets with parameter x . Note that $0 \leq x \leq \frac{n}{k}$ $\frac{n}{k}$.

- The empty set is obviously a Cameron-Liebler class of k-sets with parameter 0.
- The set of all k-subsets of Ω is a Cameron-Liebler class of k-sets with parameter $\frac{n}{k}$.
- These two examples are called the **trivial** Cameron-Liebler classes of k-sets.

Example

- Let p be a given element of Ω . The set of k-subsets of Ω containing p is a Cameron-Liebler class of k -sets with parameter 1.
- The set of all k-subsets of Ω not containing the element p is a Cameron-Liebler class of *k*-sets with parameter $\frac{n}{k} - 1$.

The **incidence vector** of a subset A of a set S is the vector whose positions correspond to the elements of S , with a one on the positions corresponding to an element in A and a zero on the other positions.

Below we will use the incidence vector of a family of k-subsets of a set Ω : as this family is a subset of the set of all k-subsets of Ω , each position corresponds to a k-subset of $Ω$.

For any vector v whose positions correspond to elements in a set, we denote its value on the position corresponding to an element a by $(v)_a$. The all-one vector will be denoted by *j*.

Given a set Ω , we also define the incidence matrix of elements and k-subsets.

This is the $|\Omega|\times (|\Omega|\kappa)$ $\binom{|\mathcal{M}|}{k}$ -matrix whose rows are labelled with the elements of $Ω$ and whose columns are labelled with the k-sets of $Ω$ and whose entries equal 1 if the element corresponding to the row is contained in the k -set corresponding to the column, and zero otherwise.

The Kneser matrix or disjointness matrix of k-sets in Ω is the $\binom{|\Omega|}{\nu}$ $\frac{|\Omega|}{k}\big)\times\big(\frac{|\Omega|}{k}$ $\binom{|\Omega|}{k}$ -matrix whose rows and columns are labelled with the *k*-sets of $Ω$ and whose entries equal 1 if the k-set corresponding to the row and the k-set corresponding to the column are disjoint, and zero otherwise.

Lemma

Let Ω be a finite set with $|\Omega| = n$ and let K be the Kneser matrix of the k-sets in Ω . The eigenvalues of K are given by $\lambda_j=(-1)^j{{n-k-j}\choose{k-j}}$ $\frac{-k-j}{k-j},$ $j=0,\ldots,k$, and the multiplicity of the eigenvalue λ_j is ${n \choose i}$ $\binom{n}{j} - \binom{n}{j-1}$ $\binom{n}{j-1}$.

Now we can present a theorem with many equivalent characterisations of Cameron-Liebler classes of k-subsets.

Theorem

Let Ω be a finite set with $|\Omega| = n$, and let k be a divisor of n. Let $\mathcal L$ be a set of k-subsets of $Ω$ with incidence vector $χ$. Denote $\frac{|\mathcal{L}|}{\binom{n-1}{k-1}}$ by x. Let C be the incidence matrix of elements and k-subsets in Ω and let K be the Kneser matrix of k-sets in Ω . The following statements are equivalent.

- (i) $\mathcal L$ is a Cameron-Liebler class of k-sets with parameter x.
- (ii) $\mathcal L$ has x different k-subsets in common with every k-uniform partition αf Ω .
- (iii) For each fixed k-subset π of Ω , the number of elements of $\mathcal L$ disjoint from π equals $(x - (\chi)_{\pi})\binom{n-k-1}{k-1}$ $\frac{-k-1}{k-1}$.
- (iv) The vector $\chi \frac{kx}{n}$ $\frac{\alpha}{n}$ j is contained in the eigenspace of K for the eigenvalue $- {n-k-1 \choose k-1}$ $\frac{-k-1}{k-1}$.
- (v) $\gamma \in row(C)$.
- (vi) $\chi \in (\ker(\mathcal{C}))^{\perp}$.

Theorem

Let Ω be a finite set with $|\Omega| = n$ and let $\mathcal L$ be a Cameron-Liebler class of k-sets with parameter x in Ω , $k > 2$. If $n > 3k$ and $\mathcal L$ is nontrivial, then either $x = 1$ and $\mathcal L$ is the set of all k-subsets containing a fixed element or $x = \frac{n}{k} - 1$ and $\mathcal L$ is the set of all k-subsets not containing a fixed element.

The theorem states that the examples shown before are the only examples of Cameron-Liebler classes of *k*-sets, in case $n > 3k$.

Only four parameter values are admissable.

Lemma

Let $\mathcal L$ be a nontrivial Cameron-Liebler class of k-sets with parameter x in a set Ω of size $n\geq 3k$, $x<\frac{n}{k}-1$ and $k\geq 2$. Then, ${\mathcal L}$ is the set of all k-sets through a fixed element and $x = 1$.

Lemma

Let $\mathcal L$ be a Cameron-Liebler class of k-sets with parameter $\frac{n}{k}-1$ in a set Ω of size n > 3k, with k > 2. Then, $\mathcal L$ is the set of all k-sets not through a fixed element.

Remark

Let Ω be a set of size n, and let k be a divisor of n. The main Theorem does not cover the cases $k = 1$, and $n \in \{k, 2k\}$.

- Assume $k = 1$, then any set of x different 1-subsets of Ω is a Cameron-Liebler class of k-sets with parameter x. So, in this case each value x, with $0 \le x \le n$, is admissable as parameter of a Cameron-Liebler class.
- \bullet If $n = k$, there is only one subset of size k, and thus all Cameron-Liebler classes of k-sets are trivial.

Remark

- \bullet If n = 2k, each k-uniform partition consists of two k-sets which are the complement of each other.
- Every set of k-subsets that is constructed by picking one of both k-sets from each k-uniform partition, is a Cameron-Liebler class of k-sets with parameter 1.

Thank you for your attention!