The Cameron-Liebler problem for sets

Andrea Švob (asvob@math.uniri.hr) Department of Mathematics, University of Rijeka, Croatia

(Joint work with Maarten De Boeck and Leo Storme)

NETCOD16

April 6, 2016

The outline of the talk

- Introduction
- 2 The characterisations result
- The classification result

- P. J. Cameron and R. A. Liebler, Tactical decompositions and orbits of projective groups, Linear Algebra Appl. 46, 91-102, 1982.
- Cameron and Liebler investigated the orbits of the projective groups PGL(n + 1, q).

Definition

A Cameron-Liebler line class \mathcal{L} with parameter x in PG(3, q) is a set of $x(q^2 + q + 1)$ lines in PG(3, q) such that any line $\ell \in \mathcal{L}$ meets precisely $x(q+1) + q^2 - 1$ lines of \mathcal{L} in a point and such that any line $\ell \notin \mathcal{L}$ meets precisely x(q+1) lines of \mathcal{L} in a point.

Many equivalent characterisations are known:

A **line spread** of PG(3, q) is a set of lines that form a partition of the point set of PG(3, q), i.e. each point of PG(3, q) is contained in precisely one line of the line spread.

The lines of a line spread are necessarily pairwise skew.

Now a line set \mathcal{L} in PG(3, q) is a Cameron-Liebler line class with parameter x if and only if it has x lines in common with every line spread of PG(3, q).

The central problem for Cameron-Liebler line classes in PG(3, q) is to determine for which parameters x a Cameron-Liebler line class exists, and to classify the examples admitting a given parameter x.

PG(3, q): a complete classification is not finished

PG(2k + 1, q): recently, Cameron-Liebler *k*-classes in PG(2k + 1, q) were introduced by M. Rodgers, L. Storme and A. Vansweevelt, and Cameron-Liebler line classes in PG(n, q) were studied by A. L. Gavrilyuk and I. Y. Mogilnykh.

A subset of size k of a set will be called shortly a k-subset.

Definition

A *k*-uniform partition of a finite set Ω , with $|\Omega| = n$ and $k \mid n$, is a set of pairwise disjoint *k*-subsets of Ω such that any element of Ω is contained in precisely one of the *k*-subsets.

Necessarily, a k-uniform partition of a finite set Ω , with $|\Omega| = n$, contains $\frac{n}{k}$ different k-subsets.

Definition

Let Ω be a finite set with $|\Omega| = n$ and let k be a divisor of n. A **Cameron-Liebler class of** k-sets with parameter x is a set of k-subsets of Ω which has x different k-subsets in common with every k-uniform partition of Ω .

The next result is the Erdős-Ko-Rado theorem, a classical result in combinatorics.

Theorem

If S is a family of k-subsets in a set Ω with $|\Omega| = n$ and $n \ge 2k$, such that the elements of S are pairwise not disjoint, then $|\Omega| \le {\binom{n-1}{k-1}}$. Moreover, if $n \ge 2k + 1$, then equality holds if and only if S is the set of all k-subsets through a fixed element of Ω .

Lemma

Let Ω be a finite set with $|\Omega| = n$, and let \mathcal{L} be a Cameron-Liebler class of *k*-sets with parameter x in Ω , with $k \mid n$.

• The number of k-uniform partitions of Ω equals $\frac{n!}{\left(\frac{n}{k}\right)!(k!)^{\frac{n}{k}}}$.

- 2 The number of k-sets in \mathcal{L} equals $\binom{n-1}{k-1}$.
- **③** The set $\overline{\mathcal{L}}$ of k-subsets of Ω not belonging to \mathcal{L} is a Cameron-Liebler class of k-sets with parameter $\frac{n}{k} x$.

Example

Let Ω be a finite set with $|\Omega| = n$, and assume $k \mid n$. We give some examples of Cameron-Liebler classes of *k*-sets with parameter *x*. Note that $0 \le x \le \frac{n}{k}$.

- The empty set is obviously a Cameron-Liebler class of *k*-sets with parameter 0.
- The set of all k-subsets of Ω is a Cameron-Liebler class of k-sets with parameter $\frac{n}{k}$.
- These two examples are called the trivial Cameron-Liebler classes of k-sets.

Example

- Let p be a given element of Ω. The set of k-subsets of Ω containing p is a Cameron-Liebler class of k-sets with parameter 1.
- The set of all k-subsets of Ω not containing the element p is a Cameron-Liebler class of k-sets with parameter ⁿ/_k - 1.

The **incidence vector** of a subset A of a set S is the vector whose positions correspond to the elements of S, with a one on the positions corresponding to an element in A and a zero on the other positions.

Below we will use the incidence vector of a family of k-subsets of a set Ω : as this family is a subset of the set of all k-subsets of Ω , each position corresponds to a k-subset of Ω .

For any vector v whose positions correspond to elements in a set, we denote its value on the position corresponding to an element a by $(v)_a$. The all-one vector will be denoted by j.

Given a set Ω , we also define the **incidence matrix of elements and** k-subsets.

This is the $|\Omega| \times {|\Omega| \choose k}$ -matrix whose rows are labelled with the elements of Ω and whose columns are labelled with the *k*-sets of Ω and whose entries equal 1 if the element corresponding to the row is contained in the *k*-set corresponding to the column, and zero otherwise.

The **Kneser matrix** or **disjointness matrix** of *k*-sets in Ω is the $\binom{|\Omega|}{k} \times \binom{|\Omega|}{k}$ -matrix whose rows and columns are labelled with the *k*-sets of Ω and whose entries equal 1 if the *k*-set corresponding to the row and the *k*-set corresponding to the column are disjoint, and zero otherwise.

Lemma

Let Ω be a finite set with $|\Omega| = n$ and let K be the Kneser matrix of the k-sets in Ω . The eigenvalues of K are given by $\lambda_j = (-1)^j \binom{n-k-j}{k-j}$, $j = 0, \ldots, k$, and the multiplicity of the eigenvalue λ_j is $\binom{n}{j} - \binom{n}{j-1}$.

Now we can present a theorem with many equivalent characterisations of Cameron-Liebler classes of k-subsets.

Theorem

Let Ω be a finite set with $|\Omega| = n$, and let k be a divisor of n. Let \mathcal{L} be a set of k-subsets of Ω with incidence vector χ . Denote $\frac{|\mathcal{L}|}{\binom{n-1}{k-1}}$ by x. Let C be the incidence matrix of elements and k-subsets in Ω and let K be the Kneser matrix of k-sets in Ω . The following statements are equivalent.

- (i) \mathcal{L} is a Cameron-Liebler class of k-sets with parameter x.
- (ii) \mathcal{L} has x different k-subsets in common with every k-uniform partition of Ω .
- (iii) For each fixed k-subset π of Ω , the number of elements of \mathcal{L} disjoint from π equals $(x (\chi)_{\pi}) \binom{n-k-1}{k-1}$.
- (iv) The vector $\chi \frac{k_n}{n}j$ is contained in the eigenspace of K for the eigenvalue $-\binom{n-k-1}{k-1}$.
- (v) $\chi \in row(C)$.
- (vi) $\chi \in (\ker(C))^{\perp}$.

Theorem

Let Ω be a finite set with $|\Omega| = n$ and let \mathcal{L} be a Cameron-Liebler class of k-sets with parameter x in Ω , $k \ge 2$. If $n \ge 3k$ and \mathcal{L} is nontrivial, then either x = 1 and \mathcal{L} is the set of all k-subsets containing a fixed element or $x = \frac{n}{k} - 1$ and \mathcal{L} is the set of all k-subsets not containing a fixed element.

The theorem states that the examples shown before are the only examples of Cameron-Liebler classes of k-sets, in case $n \ge 3k$.

Only four parameter values are admissable.

Lemma

Let \mathcal{L} be a nontrivial Cameron-Liebler class of k-sets with parameter x in a set Ω of size $n \ge 3k$, $x < \frac{n}{k} - 1$ and $k \ge 2$. Then, \mathcal{L} is the set of all k-sets through a fixed element and x = 1.

Lemma

Let \mathcal{L} be a Cameron-Liebler class of k-sets with parameter $\frac{n}{k} - 1$ in a set Ω of size $n \ge 3k$, with $k \ge 2$. Then, \mathcal{L} is the set of all k-sets not through a fixed element.

Remark

Let Ω be a set of size n, and let k be a divisor of n. The main Theorem does not cover the cases k = 1, and $n \in \{k, 2k\}$.

- Assume k = 1, then any set of x different 1-subsets of Ω is a Cameron-Liebler class of k-sets with parameter x. So, in this case each value x, with 0 ≤ x ≤ n, is admissable as parameter of a Cameron-Liebler class.
- If n = k, there is only one subset of size k, and thus all Cameron-Liebler classes of k-sets are trivial.

Remark

- If n = 2k, each k-uniform partition consists of two k-sets which are the complement of each other.
- Every set of k-subsets that is constructed by picking one of both k-sets from each k-uniform partition, is a Cameron-Liebler class of k-sets with parameter 1.

Thank you for your attention!