Designs in affine geometry

Jens Zumbrägel Computer and Communication Sciences EPFL, Lausanne

Network Coding and Designs Dubrovnik · April 4 - 8, 2016

> 2012 BrusselsAscona BarcelonaBerge nZurichGhentTa llinBordeauxPa lmelaBanzNoviS adSalamancaIst anbulDubrovnik 2016

Introduction

- Classical designs and their (projective) *q*-analogs can both be viewed as *designs in matroids*.
- Not much known on *q*-analogs of designs.
 - construction of such designs by Thomas (1987) and others
 - Steiner system S(2,3,13) has been found (2012)
 - existence of Fano plane S(2,3,7) still unknown
- Another natural matroid is given by the point sets in general position of an affine space.
- What is the relationship between the affine and the projective *q*-analogs of designs?
- Do there exist affine Steiner systems?

2 Matroid examples from finite geometry

- 3 Affine and projective designs
- Observations and questions

Matroids - an abstraction of linear independence

Definition

A matroid is a pair (S, I), where S is a finite set and I is a nonempty family of *independent* subsets of S satisfying

(i) if
$$I \in \mathcal{I}$$
 and $J \subseteq I$, then $J \in \mathcal{I}$;

(ii) (exchange axiom) if $I, J \in \mathcal{I}$ and |I| < |J|, then there is $x \in J \setminus I$ with $I \cup \{x\} \in \mathcal{I}$.

Examples

- The free matroid $(S, \mathcal{P}(S))$, where S is a finite set.
- **②** The vector matroid (V, \mathcal{I}) , where \mathcal{I} is the family of all linearly independent subsets of a finite vector space V.
- The graphic matroid (E, \mathcal{I}) , where G = (V, E) is a graph, $E \subseteq {\binom{V}{2}}$, and a subset of E is independent iff it contains no cycle.

For any matroid $M = (S, \mathcal{I})$ and any subset X of S the restriction $M|X := (X, \mathcal{I} \cap \mathcal{P}(X))$ is again a matroid.

Jens Zumbrägel (EPFL IC LACAL)

Rank and basis

Let $M = (S, \mathcal{I})$ be a matroid.

Definition

The rank $\rho(X)$ of a subset X of S is the cardinality of a maximal independent subset of X. By the exchange axiom this is well-defined.

The closure operator $cl : \mathcal{P}(S) \to \mathcal{P}(S)$ is defined by

$$cl(X) := \{x \in S \mid \rho(X \cup \{x\}) = \rho(X)\}.$$

A subset X of S satisfying X = cl(X) is called a *flat*, or a *k*-*flat* if its rank is k. For each flat X and all $x, y \in S \setminus X$ there holds the *exchange property:* $y \in cl(X \cup \{x\}) \Rightarrow x \in cl(X \cup \{y\})$.

A subset X of S is called *generating* if cl(X) = S. maximal independent = independent generating = minimal generating Such a set is called basis.

Designs in matroids

A perfect matroid design (PMD) is a matroid M of some rank n for which any k-flat has the same cardinality f_k , where $0 \le k \le n$.

Examples

- The free matroid $(S, \mathcal{P}(S))$, where |S| = n.
- **2** The vector matroid (V, \mathcal{I}) , where dim V = n.

Geometrization: Let M be a PMD. By deleting elements $x \in S$ such that $\{x\} \notin \mathcal{I}$ and identifying elements $x, y \in S$ such that $\{x, y\} \notin \mathcal{I}$, we get again a PMD M'.

Example: vector space \rightsquigarrow projective space.

Definition

A t- (n, k, λ) design in M is a collection \mathcal{B} of k-flats in M such that each t-flat in M is contained in exactly λ members of \mathcal{B} .

Any $t - (n, k, \lambda)$ design in M is also an $s - (n, k, \lambda_s)$ design for s < t.

1 A short recap of matroid theory

2 Matroid examples from finite geometry

3 Affine and projective designs

Observations and questions

PMDs from incidence geometry

Let $\mathbf{G} = (\mathcal{P}, \mathcal{L}, I)$ be an *incidence space*, with point set \mathcal{P} , line set \mathcal{L} and incidence relation $I \subseteq \mathcal{P} \times \mathcal{L}$. A set \mathcal{U} of points is called a *linear set* if $(PQ) \subseteq \mathcal{U}$ for any two points P, Q of \mathcal{U} . The *span* cl(\mathcal{X}) of a subset \mathcal{X} of \mathcal{P} is the smallest linear set containing \mathcal{X} . A set of points \mathcal{B} is *independent* if $P \notin cl(\mathcal{B} \setminus \{P\})$ for all $P \in \mathcal{B}$.

Let **G** be a *projective space* or an *affine space*. Then:

- For any linear set U and points P, Q ∉ U the exchange property Q ∈ cl(U ∪ {P}) ⇒ P ∈ cl(U ∪ {Q}) holds.
- Then $M_{\mathbf{G}} := (\mathcal{P}, \mathcal{I})$ is a matroid, where $\mathcal{I} = \{$ independent sets $\}$.
- One defines dim $\mathbf{G} = |\mathcal{B}| 1$, where \mathcal{B} is a basis. Thus: geometric dimension = matroid rank 1.
- All *t*-dimensional subspaces have the same number of points, i.e., the matroid of independent sets is a perfect matroid design.

Designs in finite geometries

Let $\mathbf{G} = (\mathcal{P}, \mathcal{L}, I)$ be a projective or an affine space of dimension v - 1.

Definition

A t- (v, k, λ) design in **G** is a collection \mathcal{B} of (k - 1)-dimensional subspaces of **G**, called *blocks*, such that every (t - 1)-dimensional subspace of **G** is contained in exactly λ blocks.

If $\mathbf{G} = \mathbf{P}$ is a projective space we refer to a $t - (v, k, \lambda)$ projective design, and in case $\mathbf{G} = \mathbf{A}$ is an affine space to an $t - (v, k, \lambda)$ affine design.

If $\lambda = 1$ we speak of a (projective or affine) Steiner system S(t, k, v).

Let $\mathbf{P} = \mathbf{P}(V)$ be the projective space associated to a vector space V. Then a t- (v, k, λ) projective design in \mathbf{P} corresponds to a t- (v, k, λ) subspace design in V, i.e., a collection \mathcal{B} of k-dim. subspaces of V such that each t-dim. subspace of V is contained in exactly λ members of \mathcal{B} .

1 A short recap of matroid theory

2 Matroid examples from finite geometry

4 Observations and questions

Affine designs from projective designs

Let V be a vector space and let T be its group of translations.

Theorem

Suppose that \mathcal{B} is a t-(v, k, λ) subspace design in V, then $T\mathcal{B} := \{ \alpha U \mid U \in \mathcal{B}, \alpha \in T \}$ is an (t+1)-(v+1, k+1, λ) affine design.

Conversely, if \mathcal{D} is an (t+1)- $(v+1, k+1, \lambda)$ affine design in $\mathbf{A}(V)$, then $\mathcal{D}_0 := \{W \in \mathcal{D} \mid 0 \in W\}$ is a t- (v, k, λ) subspace design.

$$\begin{array}{ccc} t\text{-}(v,k,\lambda) \\ \textit{projective designs} \end{array} & \longleftrightarrow \quad \begin{array}{c} (t+1)\text{-}(v+1,k+1,\lambda) \\ & \textit{affine designs} \end{array}$$

Relations with classical designs

Proposition

For any 2- (v, k, λ) projective design of order q there is a 2- $([v]_q, [k]_q, \lambda)$ classical design, $[d]_q := \frac{q^d - 1}{q - 1}$.

For any 2- (v, k, λ) affine design of order q there is a 2- $(q^{v-1}, q^{k-1}, \lambda)$ classical design; for any 3- (v, k, λ) affine design of order q = 2 there is a 3- $(2^{v-1}, 2^{k-1}, \lambda)$ classical design.

Corollary (cf. [EV11, Th. 4])

For any 2- (v, k, λ) projective design of order 2 there is a 3- $(2^v, 2^k, \lambda)$ classical design. In particular, for any S(2, 3, v) projective Steiner system we obtain a classical $S(3, 8, 2^v)$ Steiner system.

1 A short recap of matroid theory

2 Matroid examples from finite geometry

3 Affine and projective designs

Observations

- For any k, ℓ there exist a projective Steiner system S(1, k, kℓ), namely a spread.
 Hence there exist an affine Steiner system S(2, k + 1, kℓ + 1).
 This includes (k = 2) Steiner triple systems S(2, 3, 2ℓ + 1) and the "affine q-analog" of the Fano plane S(2, 3, 7).
- Let us examine the affine Steiner system S(2, 3, 7) for q = 2. This is a family B of planes in A(F₂⁶) such that each line is contained in exactly one plane in B. How many lines in A(F₂⁶)? Answer: 2016. The size of B is ¹/₆ · 2016 = 16 · 21 = 336.

Possible application in random network coding

Instead of relaying a linear combination propagate an affine combination.

The affine dimension is *submodular*, i.e., $\dim(X \lor Y) + \dim(X \land Y) \le \dim X + \dim Y$. Can be extended to a metric *d* by $d(X, Y) := \dim(X \lor Y) - \dim X$.

Final remarks

- There is an affine Steiner system S(2,3,7) invariant under the Singer cycle of size 63 and which has 273 parallel classes.
 - Used in [EV11, Lem. 6] to construct a 2-dim. spaces covering code in Grass₂(7,3) of size 399.
- Is there an affine Steiner system S(2,3,7) which is *skew*, i.e., with no pair of parallel planes?
 - If yes, then a new $(7,3,2)_2$ subspace code of size 336 is found.
 - ► If no, then the non-existence of the projective *q*-analog of the Fano plane S(2,3,7) would be proven.

References

- M.K. Bennett, *Affine and projective geometry*, John Wiley & Sons, Inc., New York (1995)
- A. Beutelspacher, U. Rosenbaum, *Projective geometry: from foundations to applications*, Cambridge University Press, Cambridge (1998)
- P. J. Cameron, M. Deza, "Designs and matroids," in: C. J. Colbourn, J. H. Dinitz (eds.), *Handbook of Combinatorial Designs*, CRC Press (2006), 847–852.
 - T. Etzion, A. Vardy, On *q*-analogs of Steiner systems and covering designs, Adv. Math. Commun. **5**(2) (2011), 161–176.
 - J. Oxley, *Matroid theory*, Second Ed., Oxford University Press, Oxford, 2011.
- H. Whitney, "On the abstract properties of linear dependence," *Amer. J. Math.* **57**(3) (1935), 509–533.