Designs in affine geometry

Jens Zumbrägel Computer and Communication Sciences EPFL, Lausanne

Network Coding and Designs Dubrovnik · April 4 - 8, 2016

> 2012 **BrusselsAscona** BarcelonaBerge nZurichGhentTa **llinBordeauxPa lmelaBanzNoviS** adSalamancaIst anbulDubrovnik 2016

Introduction

- \bullet Classical designs and their (projective) q -analogs can both be viewed as designs in matroids.
- Not much known on *q*-analogs of designs.
	- \triangleright construction of such designs by Thomas (1987) and others
	- Steiner system $S(2, 3, 13)$ has been found (2012)
	- \triangleright existence of Fano plane $S(2,3,7)$ still unknown
- Another natural matroid is given by the point sets in general position of an affine space.
- What is the relationship between the affine and the projective q -analogs of designs?
- Do there exist affine Steiner systems?

[Matroid examples from finite geometry](#page-6-0)

Matroids – an abstraction of linear independence

Definition

A matroid is a pair (S, \mathcal{I}) , where S is a finite set and \mathcal{I} is a nonempty family of *independent* subsets of S satisfying

(i) if
$$
I \in \mathcal{I}
$$
 and $J \subseteq I$, then $J \in \mathcal{I}$;

(ii) (exchange axiom) if $I, J \in \mathcal{I}$ and $|I| < |J|$, then there is $x \in J \setminus I$ with $I \cup \{x\} \in \mathcal{I}$.

Examples

- **1** The free matroid $(S, \mathcal{P}(S))$, where S is a finite set.
- **2** The vector matroid (V, \mathcal{I}) , where \mathcal{I} is the family of all linearly independent subsets of a finite vector space V .
- \bullet The *graphic matroid* (E,\mathcal{I}) , where $\mathit{G}=(\mathit{V},\mathit{E})$ is a graph, $\mathit{E}\subseteq\binom{\mathit{V}}{2}$, and a subset of E is independent iff it contains no cycle.

For any matroid $M = (S, \mathcal{I})$ and any subset X of S the restriction $M|X := (X, \mathcal{I} \cap \mathcal{P}(X))$ is again a matroid.

Jens Zumbrägel (EPFL IC LACAL) [Designs in affine geometry](#page-0-0) Dubrovnik 2016 4 / 17

Rank and basis

Let $M = (S, \mathcal{I})$ be a matroid.

Definition

The rank $\rho(X)$ of a subset X of S is the cardinality of a maximal independent subset of X . By the exchange axiom this is well-defined.

The closure operator cl : $\mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is defined by

$$
cl(X) := \{x \in S \mid \rho(X \cup \{x\}) = \rho(X)\}.
$$

A subset X of S satisfying $X = cl(X)$ is called a flat, or a k-flat if its rank is k. For each flat X and all $x, y \in S \setminus X$ there holds the exchange property: $y \in cl(X \cup \{x\}) \Rightarrow x \in cl(X \cup \{y\})$.

A subset X of S is called generating if $cl(X) = S$. maximal independent $=$ independent generating $=$ minimal generating Such a set is called basis.

Designs in matroids

A perfect matroid design (PMD) is a matroid M of some rank n for which any k-flat has the same cardinality f_k , where $0 \leq k \leq n$.

Examples

- **1** The free matroid $(S, \mathcal{P}(S))$, where $|S| = n$.
- **2** The vector matroid (V, \mathcal{I}) , where dim $V = n$.

Geometrization: Let M be a PMD. By deleting elements $x \in S$ such that $\{x\} \notin \mathcal{I}$ and identifying elements $x, y \in S$ such that $\{x, y\} \notin \mathcal{I}$, we get again a PMD M' . Example: vector space \rightsquigarrow projective space.

Definition

A t- (n, k, λ) design in M is a collection B of k-flats in M such that each t-flat in M is contained in exactly λ members of β .

Any $t-(n, k, \lambda)$ design in M is also an $s-(n, k, \lambda_s)$ design for $s < t$.

[Matroid examples from finite geometry](#page-6-0)

PMDs from incidence geometry

Let $\mathbf{G} = (\mathcal{P}, \mathcal{L}, I)$ be an *incidence space*, with point set \mathcal{P} , line set $\mathcal L$ and incidence relation $I \subseteq \mathcal P \times \mathcal L$. A set $\mathcal U$ of points is called a *linear set* if $(PQ) \subset U$ for any two points P, Q of U. The span cl(X) of a subset X of P is the smallest linear set containing X . A set of points B is independent if $P \notin cl(B \setminus \{P\})$ for all $P \in \mathcal{B}$.

Let G be a *projective space* or an *affine space*. Then:

- For any linear set U and points $P, Q \notin U$ the exchange property $Q \in \text{cl}(\mathcal{U} \cup \{P\}) \Rightarrow P \in \text{cl}(\mathcal{U} \cup \{Q\})$ holds.
- Then $M_G := (\mathcal{P}, \mathcal{I})$ is a matroid, where $\mathcal{I} = \{\text{ independent sets }\}.$
- One defines dim $G = |\mathcal{B}| 1$, where $\mathcal B$ is a basis. Thus: geometric dimension $=$ matroid rank -1 .
- All t-dimensional subspaces have the same number of points, i.e., the matroid of independent sets is a perfect matroid design.

Designs in finite geometries

Let $\mathbf{G} = (\mathcal{P}, \mathcal{L}, I)$ be a projective or an affine space of dimension $v - 1$.

Definition

A t-(v, k, λ) design in G is a collection B of $(k-1)$ -dimensional subspaces of G, called *blocks*, such that every $(t - 1)$ -dimensional subspace of **G** is contained in exactly λ blocks.

If $G = P$ is a projective space we refer to a $t-(v, k, \lambda)$ projective design, and in case $G = A$ is an affine space to an $t-(v, k, \lambda)$ affine design.

If $\lambda = 1$ we speak of a (projective or affine) Steiner system $S(t, k, v)$.

Let $P = P(V)$ be the projective space associated to a vector space V. Then a t- (v, k, λ) projective design in **P** corresponds to a t- (v, k, λ) subspace design in V, i.e., a collection β of k-dim. subspaces of V such that each t-dim. subspace of V is contained in exactly λ members of β .

[A short recap of matroid theory](#page-2-0)

[Matroid examples from finite geometry](#page-6-0)

[Observations and questions](#page-12-0)

Affine designs from projective designs

Let V be a vector space and let T be its group of translations.

Theorem

Suppose that B is a t- (v, k, λ) subspace design in V, then $T\mathcal{B} := {\alpha \cup \mid \cup \in \mathcal{B}, \alpha \in \mathcal{T}}$ is an $(t+1)- (v+1, k+1, \lambda)$ affine design.

Conversely, if D is an $(t + 1)-(v + 1, k + 1, \lambda)$ affine design in $\mathbf{A}(V)$, then $\mathcal{D}_0 := \{W \in \mathcal{D} \mid 0 \in W\}$ is a t- (v, k, λ) subspace design.

$$
\begin{array}{ccc}\nt-(v,k,\lambda) & & (t+1)-(v+1,k+1,\lambda) \\
\text{projective designs} & & \text{affine designs}\n\end{array}
$$

Relations with classical designs

Proposition

For any 2-(v, k, λ) projective design of order q there is a 2-([v]_q, [k]_q, λ) classical design, $[d]_q := \frac{q^d-1}{q-1}$ $\frac{q^{2}-1}{q-1}$.

For any 2-(v, k, $\lambda)$ affine design of order $\,q\,$ there is a 2-($q^{\nu-1},q^{k-1},\lambda)$ classical design; for any 3- (v, k, λ) affine design of order $q = 2$ there is a 3- $(2^{\nu-1},2^{k-1},\lambda)$ classical design.

Corollary (cf. [EV11, Th. 4])

For any 2- (v, k, λ) projective design of order 2 there is a 3- $(2^v, 2^k, \lambda)$ classical design. In particular, for any $S(2, 3, v)$ projective Steiner system we obtain a classical $S(3,8,2^{\nu})$ Steiner system.

[A short recap of matroid theory](#page-2-0)

[Matroid examples from finite geometry](#page-6-0)

[Affine and projective designs](#page-9-0)

Observations

- For any k, ℓ there exist a projective Steiner system $S(1, k, k\ell)$, namely a spread. Hence there exist an affine Steiner system $S(2, k + 1, k\ell + 1)$. This includes ($k = 2$) Steiner triple systems $S(2, 3, 2\ell + 1)$ and the "affine q-analog" of the Fano plane $S(2, 3, 7)$.
- Let us examine the affine Steiner system $S(2,3,7)$ for $q=2$. This is a family ${\mathcal B}$ of planes in ${\bf A}({\mathbb{F}}_2^6)$ such that each line is contained in exactly one plane in β . How many lines in ${\bf A}({\mathbb{F}}_2^6)$? Answer: 2016. The size of β is $\frac{1}{6} \cdot 2016 = 16 \cdot 21 = 336$.

Possible application in random network coding

Instead of relaying a linear combination propagate an affine combination.

The affine dimension is *submodular*, i.e., $\dim(X \vee Y) + \dim(X \wedge Y) \leq \dim X + \dim Y$. Can be extended to a metric d by $d(X, Y) := dim(X \vee Y) - dim X$.

Final remarks

- There is an affine Steiner system $S(2,3,7)$ invariant under the Singer cycle of size 63 and which has 273 parallel classes.
	- \triangleright Used in [EV11, Lem. 6] to construct a 2-dim. spaces covering code in $Grass₂(7, 3)$ of size 399.
- Is there an affine Steiner system $S(2,3,7)$ which is skew, i.e., with no pair of parallel planes?
	- If yes, then a new $(7, 3, 2)_2$ subspace code of size 336 is found.
	- If no, then the non-existence of the projective q -analog of the Fano plane $S(2, 3, 7)$ would be proven.

References

- M. K. Bennett, Affine and projective geometry, John Wiley & Sons, Inc., New York (1995)
- A. Beutelspacher, U. Rosenbaum, Projective geometry: from foundations to applications, Cambridge University Press, Cambridge (1998)
- 譶 P. J. Cameron, M. Deza, "Designs and matroids," in: C. J. Colbourn, J. H. Dinitz (eds.), Handbook of Combinatorial Designs, CRC Press (2006), 847–852.
	- T. Etzion, A. Vardy, On q -analogs of Steiner systems and covering designs, Adv. Math. Commun. 5(2) (2011), 161–176.
	- J. Oxley, Matroid theory, Second Ed., Oxford University Press, Oxford, 2011.
	- H. Whitney, "On the abstract properties of linear dependence," Amer. J. Math. 57(3) (1935), 509–533.